Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 57 papers

Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling.

  • Varun V Gadkari‎ et al.
  • Nucleic acids research‎
  • 2018‎

Proliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon. We found that Sso PCNA samples ring-open and ring-closed conformations even in the absence of its clamp loader complex, replication factor C, and transition to the ring-open conformation is modulated by the ionic strength of the solution. The IM-MS results corroborate the smFRET findings suggesting that PCNA dynamics are maintained in the gas phase and further establishing IM-MS as a reliable strategy to investigate macromolecular motions. Our molecular dynamic simulations agree with the experimental data and reveal that ring-open PCNA often adopts an out-of-plane left-hand geometry. Collectively, these results implore future studies to define the roles of PCNA dynamics in DNA loading and other PCNA-mediated interactions.


Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence.

  • Steven W Sowa‎ et al.
  • Nucleic acids research‎
  • 2015‎

While RNA structures have been extensively characterized in vitro, very few techniques exist to probe RNA structures inside cells. Here, we have exploited mechanisms of post-transcriptional regulation to synthesize fluorescence-based probes that assay RNA structures in vivo. Our probing system involves the co-expression of two constructs: (i) a target RNA and (ii) a reporter containing a probe complementary to a region in the target RNA attached to an RBS-sequestering hairpin and fused to a sequence encoding the green fluorescent protein (GFP). When a region of the target RNA is accessible, the area can interact with its complementary probe, resulting in fluorescence. By using this system, we observed varied patterns of structural accessibility along the length of the Tetrahymena group I intron. We performed in vivo DMS footprinting which, along with previous footprinting studies, helped to explain our probing results. Additionally, this novel approach represents a valuable tool to differentiate between RNA variants and to detect structural changes caused by subtle mutations. Our results capture some differences from traditional footprinting assays that could suggest that probing in vivo via oligonucleotide hybridization facilitates the detection of folding intermediates. Importantly, our data indicate that intracellular oligonucleotide probing can be a powerful complement to existing RNA structural probing methods.


Detection of phosphodiester adducts formed by the reaction of benzo[a]pyrene diol epoxide with 2'-deoxynucleotides using collision-induced dissociation electrospray ionization tandem mass spectrometry.

  • Margaret Gaskell‎ et al.
  • Nucleic acids research‎
  • 2007‎

In this study, we investigated the products formed following the reaction of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (B[a]PDE) with 2'-deoxynucleoside 3'-monophosphates. The B[a]PDE plus 2'-deoxynucleotide reaction mixtures were purified using solid phase extraction (SPE) and subjected to HPLC with fluorescence detection. Fractions corresponding to reaction product peaks were collected and desalted using SPE prior to analysis for the presence of molecular ions corresponding to m/z 648, 632, 608 and 623 [M-H]- consistent with B[a]PDE adducted (either on the base or phosphate group) 2'-deoxynucleotides of guanine, adenine, cytosine and thymine, respectively, using LC-ESI-MS/MS collision-induced dissociation (CID). Reaction products were identified having CID product ion spectra containing product ions at m/z 452, 436 and 412 [(B[a]Ptriol+base)-H]-, resulting from cleavage of the glycosidic bond between the 2'-deoxyribose and base, corresponding to B[a]PDE adducts of guanine, adenine and cytosine, respectively. Further reaction products were identified having unique CID product ion spectra characteristic of B[a]PDE adduct formation with the phosphate group of the 2'-deoxynucleotide. The presence of product ions at m/z 399 and 497 were observed for all four 2'-deoxynucleotides, corresponding to [(B[a]Ptriol+phosphate)-H]- and [(2'-deoxyribose+phosphate+B[a]Ptriol)-H]-, respectively. In conclusion, this investigation provides the first direct evidence for the formation of phosphodiester adducts by B[a]PDE following reaction with 2'-deoxynucleotides.


The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication.

  • Alexander Jacobs‎ et al.
  • Nucleic acids research‎
  • 2018‎

In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA of the CP were found to preferentially bind to an RNA hairpin motif that directs the initiation of BMV RNA synthesis. RNA binding causes the peptide to change from heterogeneous structures to a single family of structures. Fluorescence anisotropy, fluorescence quenching and size exclusion chromatography experiments all confirm that the NTA can specific recognize the RNA motif. The peptide introduced into plants along with BMV virion increased accumulation of the BMV CP and accelerated the rate of minus-strand RNA synthesis. The intrinsically disordered BMV NTA could thus specifically recognize BMV RNAs to affect viral infection.


Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes.

  • Dan Zhao‎ et al.
  • Nucleic acids research‎
  • 2014‎

G-quadruplexes (G4) have been found increasing potential in applications, such as molecular therapeutics, diagnostics and sensing. Both Thioflavin T (ThT) and N-Methyl mesoporphyrin IX (NMM) become fluorescent in the presence of most G4, but thrombin-binding aptamer (TBA) has been reported as the only exception of the known G4-forming oligonucleotides when ThT is used as a high-throughput assay to identify G4 formation. Here, we investigate the interactions between ThT/NMM and TBA through fluorescence spectroscopy, circular dichroism and molecular docking simulation experiments in the absence or presence of cations. The results display that a large ThT fluorescence enhancement can be observed only when ThT bind to the parallel TBA quadruplex, which is induced to form by ThT in the absence of cations. On the other hand, great promotion in NMM fluorescence can be obtained only in the presence of anti-parallel TBA quadruplex, which is induced to fold by K+ or thrombin. The highly selective recognition of TBA quadruplex with different topologies by the two probes may be useful to investigate the interactions between conformation-specific G4 and the associated proteins, and could also be applied in label-free fluorescent sensing of other biomolecules.


RecA requires two molecules of Mg2+ ions for its optimal strand exchange activity in vitro.

  • Raeyeong Kim‎ et al.
  • Nucleic acids research‎
  • 2018‎

Mg2+ ion stimulates the DNA strand exchange reaction catalyzed by RecA, a key step in homologous recombination. To elucidate the molecular mechanisms underlying the role of Mg2+ and the strand exchange reaction itself, we investigated the interaction of RecA with Mg2+ and sought to determine which step of the reaction is affected. Thermal stability, intrinsic fluorescence, and native mass spectrometric analyses of RecA revealed that RecA binds at least two Mg2+ ions with KD ≈ 2 mM and 5 mM. Deletion of the C-terminal acidic tail of RecA made its thermal stability and fluorescence characteristics insensitive to Mg2+ and similar to those of full-length RecA in the presence of saturating Mg2+. These observations, together with the results of a molecular dynamics simulation, support the idea that the acidic tail hampers the strand exchange reaction by interacting with other parts of RecA, and that binding of Mg2+ to the tail prevents these interactions and releases RecA from inhibition. We observed that binding of the first Mg2+ stimulated joint molecule formation, whereas binding of the second stimulated progression of the reaction. Thus, RecA is actively involved in the strand exchange step as well as bringing the two DNAs close to each other.


Human CDK18 promotes replication stress signaling and genome stability.

  • Giancarlo Barone‎ et al.
  • Nucleic acids research‎
  • 2016‎

Cyclin-dependent kinases (CDKs) coordinate cell cycle checkpoints with DNA repair mechanisms that together maintain genome stability. However, the myriad mechanisms that can give rise to genome instability are still to be fully elucidated. Here, we identify CDK18 (PCTAIRE 3) as a novel regulator of genome stability, and show that depletion of CDK18 causes an increase in endogenous DNA damage and chromosomal abnormalities. CDK18-depleted cells accumulate in early S-phase, exhibiting retarded replication fork kinetics and reduced ATR kinase signaling in response to replication stress. Mechanistically, CDK18 interacts with RAD9, RAD17 and TOPBP1, and CDK18-deficiency results in a decrease in both RAD17 and RAD9 chromatin retention in response to replication stress. Importantly, we demonstrate that these phenotypes are rescued by exogenous CDK18 in a kinase-dependent manner. Collectively, these data reveal a rate-limiting role for CDK18 in replication stress signalling and establish it as a novel regulator of genome integrity.


Inhibition of DNA replication initiation by silver nanoclusters.

  • Yu Tao‎ et al.
  • Nucleic acids research‎
  • 2021‎

Silver nanoclusters (AgNCs) have outstanding physicochemical characteristics, including the ability to interact with proteins and DNA. Given the growing number of diagnostic and therapeutic applications of AgNCs, we evaluated the impact of AgNCs on DNA replication and DNA damage response in cell-free extracts prepared from unfertilized Xenopus laevis eggs. We find that, among a number of silver nanomaterials, AgNCs uniquely inhibited genomic DNA replication and abrogated the DNA replication checkpoint in cell-free extracts. AgNCs did not affect nuclear membrane or nucleosome assembly. AgNCs-supplemented extracts showed a strong defect in the loading of the mini chromosome maintenance (MCM) protein complex, the helicase that unwinds DNA ahead of replication forks. FLAG-AgNCs immunoprecipitation and mass spectrometry analysis of AgNCs associated proteins demonstrated direct interaction between MCM and AgNCs. Our studies indicate that AgNCs directly prevent the loading of MCM, blocking pre-replication complex (pre-RC) assembly and subsequent DNA replication initiation. Collectively, our findings broaden the scope of silver nanomaterials experimental applications, establishing AgNCs as a novel tool to study chromosomal DNA replication.


Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions.

  • Idir Malki‎ et al.
  • Nucleic acids research‎
  • 2022‎

Sam68, also known as KHDRBS1, is a member of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins and its role is modulated by post-translational modifications, including serine/threonine phosphorylation, that differ at various stages of the cell cycle. However, the molecular basis and mechanisms of these modulations remain largely unknown. Here, we combined mass spectrometry, nuclear magnetic resonance spectroscopy and cell biology techniques to provide a comprehensive post-translational modification mapping of Sam68 at different stages of the cell cycle in HEK293 and HCT116 cells. We established that Sam68 is specifically phosphorylated at T33 and T317 by Cdk1, and demonstrated that these phosphorylation events reduce the binding of Sam68 to RNA, control its cellular localization and reduce its alternative splicing activity, leading to a reduction in the induction of apoptosis and an increase in the proliferation of HCT116 cells.


Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment.

  • Alexander Borodavka‎ et al.
  • Nucleic acids research‎
  • 2015‎

Reoviruses are important human, animal and plant pathogens having 10-12 segments of double-stranded genomic RNA. The mechanisms controlling the assortment and packaging of genomic segments in these viruses, remain poorly understood. RNA-protein and RNA-RNA interactions between viral genomic segment precursors have been implicated in the process. While non-structural viral RNA-binding proteins, such as avian reovirus σNS, are essential for virus replication, the mechanism by which they assist packaging is unclear. Here we demonstrate that σNS assembles into stable elongated hexamers in vitro, which bind single-stranded nucleic acids with high affinity, but little sequence specificity. Using ensemble and single molecule fluorescence spectroscopy, we show that σNS also binds to a partially double-stranded RNA, resulting in gradual helix unwinding. The hexamer can bind multiple RNA molecules and exhibits strand-annealing activity, thus mediating conversion of metastable, intramolecular stem-loops into more stable heteroduplexes. We demonstrate that the ARV σNS acts as an RNA chaperone facilitating specific RNA-RNA interactions between genomic precursors during segment assortment and packaging.


A homozygous mutation in the human selenocysteine tRNA gene impairs UGA recoding activity and selenoproteome regulation by selenium.

  • Caroline Vindry‎ et al.
  • Nucleic acids research‎
  • 2023‎

The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.


SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes.

  • Adem Yildirim‎ et al.
  • Nucleic acids research‎
  • 2021‎

Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome-the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofactor SON but also with PRPFs and snRNAs related to the tri-snRNP complex. SANS is required for the transfer of tri-snRNPs between Cajal bodies and nuclear speckles for spliceosome assembly and may also participate in snRNP recycling back to Cajal bodies. SANS depletion alters the kinetics of spliceosome assembly, leading to accumulation of complex A. SANS deficiency and USH1G pathogenic mutations affects splicing of genes related to cell proliferation and human Usher syndrome. Thus, we provide the first evidence that splicing dysregulation may participate in the pathophysiology of Usher syndrome.


A hybrid structure determination approach to investigate the druggability of the nucleocapsid protein of SARS-CoV-2.

  • Giacomo Padroni‎ et al.
  • Nucleic acids research‎
  • 2023‎

The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.


Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus.

  • Chien-Hui Ma‎ et al.
  • Nucleic acids research‎
  • 2013‎

The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at STB. The remodels the structure of chromatin (RSC) chromatin remodeling complex, the nuclear motor Kip1, the histone H3 variant Cse4 and the cohesin complex associate with both loci. These factors appear to contribute to plasmid segregation either directly or indirectly through their roles in chromosome segregation. Assembly and disassembly of the plasmid-coded partitioning proteins Rep1 and Rep2 and host factors at STB follow a temporal hierarchy during the cell cycle. Assembly is initiated by STB association of [Rsc8-Rsc58], followed by [Rep1-Rep2-Kip1] and [Cse4-Rsc2-Sth1] recruitment, and culminates in cohesin assembly. Disassembly starts with dissociation of RSC components, is followed by cohesin disassembly and Cse4 exit during anaphase and late telophase, respectively. [Rep1-Rep2-Kip1] persists through G1 of the ensuing cell cycle. The de novo assembly of the 'partitioning complex' is cued by the innate cell cycle clock and is dependent on DNA replication. Shared functional attributes of STB and centromere (CEN) are consistent with a potential evolutionary link between them.


iSMOD: an integrative browser for image-based single-cell multi-omics data.

  • Weihang Zhang‎ et al.
  • Nucleic acids research‎
  • 2023‎

Genomic and transcriptomic image data, represented by DNA and RNA fluorescence in situ hybridization (FISH), respectively, together with proteomic data, particularly that related to nuclear proteins, can help elucidate gene regulation in relation to the spatial positions of chromatins, messenger RNAs, and key proteins. However, methods for image-based multi-omics data collection and analysis are lacking. To this end, we aimed to develop the first integrative browser called iSMOD (image-based Single-cell Multi-omics Database) to collect and browse comprehensive FISH and nucleus proteomics data based on the title, abstract, and related experimental figures, which integrates multi-omics studies focusing on the key players in the cell nucleus from 20 000+ (still growing) published papers. We have also provided several exemplar demonstrations to show iSMOD's wide applications-profiling multi-omics research to reveal the molecular target for diseases; exploring the working mechanism behind biological phenomena using multi-omics interactions, and integrating the 3D multi-omics data in a virtual cell nucleus. iSMOD is a cornerstone for delineating a global view of relevant research to enable the integration of scattered data and thus provides new insights regarding the missing components of molecular pathway mechanisms and facilitates improved and efficient scientific research.


AT-hook peptides bind the major and minor groove of AT-rich DNA duplexes.

  • Alyssa Garabedian‎ et al.
  • Nucleic acids research‎
  • 2022‎

The mammalian high mobility group protein AT-hook 2 (HMGA2) houses three motifs that preferentially bind short stretches of AT-rich DNA regions. These DNA binding motifs, known as 'AT-hooks', are traditionally characterized as being unstructured. Upon binding to AT-rich DNA, they form ordered assemblies. It is this disordered-to-ordered transition that has implicated HMGA2 as a protein actively involved in many biological processes, with abnormal HMGA expression linked to a variety of health problems including diabetes, obesity, and oncogenesis. In the current work, the solution binding dynamics of the three 'AT-hook' peptides (ATHPs) with AT-rich DNA hairpin substrates were studied using DNA UV melting studies, fluorescence spectroscopy, native ion mobility spectrometry-mass spectrometry (IMS-MS), solution isothermal titration calorimetry (ITC) and molecular modeling. Results showed that the ATHPs bind to the DNA to form a single, 1:1 and 2:1, 'key-locked' conformational ensemble. The molecular models showed that 1:1 and 2:1 complex formation is driven by the capacity of the ATHPs to bind to the minor and major grooves of the AT-rich DNA oligomers. Complementary solution ITC results confirmed that the 2:1 stoichiometry of ATHP: DNA is originated under native conditions in solution.


Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins.

  • Susanna Cogoi‎ et al.
  • Nucleic acids research‎
  • 2008‎

The human KRAS proto-oncogene contains a critical nuclease hypersensitive element (NHE) upstream of the major transcription initiation site. In this article, we demonstrate by primer-extension experiments, PAGE, chemical footprinting, CD, UV and FRET experiments that the G-rich strand of NHE (32R) folds into intra-molecular G-quadruplex structures. Fluorescence data show that 32R in 100 mM KCl melts with a biphasic profile, showing the formation of two distinct G-quadruplexes with T(m) of approximately 55 degrees C (Q(1)) and approximately 72 degrees C (Q(2)). DMS-footprinting and CD suggest that Q(1) can be a parallel and Q(2) a mixed parallel/antiparallel G-quadruplex. When dsNHE (32R hybridized to its complementary) is incubated with a nuclear extract from Panc-1 cells, three DNA-protein complexes are observed by EMSA. The complex of slower mobility is competed by quadruplex 32R, but not by mutant oligonucleotides, which cannot form a quadruplex structure. Using paramagnetic beads coupled with 32R, we pulled down from the Panc-1 extract proteins with affinity for quadruplex 32R. One of these is the heterogeneous nuclear ribonucleoprotein A1, which was previously reported to unfold quadruplex DNA. Our study suggests a role of quadruplex DNA in KRAS transcription and provides the basis for the rationale design of molecular strategies to inhibit the expression of KRAS.


Direct observation of the translocation mechanism of transcription termination factor Rho.

  • Veronika Gocheva‎ et al.
  • Nucleic acids research‎
  • 2015‎

Rho is a ring-shaped, ATP-fueled motor essential for remodeling transcriptional complexes and R-loops in bacteria. Despite years of research on this fundamental model helicase, key aspects of its mechanism of translocation remain largely unknown. Here, we used single-molecule manipulation and fluorescence methods to directly monitor the dynamics of RNA translocation by Rho. We show that the efficiency of Rho activation is strongly dependent on the force applied on the RNA but that, once active, Rho is able to translocate against a large opposing force (at least 7 pN) by a mechanism involving 'tethered tracking'. Importantly, the ability to directly measure dynamics at the single-molecule level allowed us to determine essential motor properties of Rho. Hence, Rho translocates at a rate of ∼56 nt per second under our experimental conditions, which is 2-5 times faster than velocities measured for RNA polymerase under similar conditions. Moreover, the processivity of Rho (∼62 nt at a 7 pN opposing force) is large enough for Rho to reach termination sites without dissociating from its RNA loading site, potentially increasing the efficiency of transcription termination. Our findings unambiguously establish 'tethered tracking' as the main pathway for Rho translocation, support 'kinetic coupling' between Rho and RNA polymerase during Rho-dependent termination, and suggest that forces applied on the nascent RNA transcript by cellular substructures could have important implications for the regulation of transcription and its coupling to translation in vivo.


TATDN2 resolution of R-loops is required for survival of BRCA1-mutant cancer cells.

  • Aruna S Jaiswal‎ et al.
  • Nucleic acids research‎
  • 2023‎

BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.


RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates.

  • Bogdan Polevoda‎ et al.
  • Nucleic acids research‎
  • 2015‎

APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181-194 in the N-terminus and aa 314-320 and 345-374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15-29, 41-52 and 83-99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: