2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Alveolar macrophage - derived exosomes modulate severity and outcome of acute lung injury.

  • Cong Ye‎ et al.
  • Aging‎
  • 2020‎

Severe acute lung injury (ALI) can cause death, and the survivals may develop acute respiratory distress syndrome (ARDS) due to fibrotic repair of the lung. Alveolar macrophages play a demonstrative role during the pathogenesis of ALI, and the timing and degree of differentially polarization of macrophages determine the severity of disease and outcome. Exosomes are important mediators of cellular communication and play critical roles during macrophage differentiation, proliferation and function. Nevertheless, the exact effects of alveolar macrophage - derived exosomes on ALI remain unknow. Here, we used lipopolysaccharide (LPS) to induce ALI in mice and analyzed the exosome population in bronchoalveolar lavage fluid (BALF) from macrophages, neutrophils and epithelial cells at different time points after treatment. Our data showed that macrophages were the major secretors for early secreted pro-inflammatory cytokines in the BALF-exosomes, which likely activated neutrophils to produce a variety of pro-inflammatory cytokines and IL-10. IL-10 by neutrophils in BALF-exosomes likely in turn polarized macrophages to M2c, which may be responsible for post-ALI fibrosis. Our study thus reveals a previous non-acknowledged role of BALF-exosomes as a mediator of inflammatory response and cell crosstalk during ALI.


miR-137 prevents inflammatory response, oxidative stress, neuronal injury and cognitive impairment via blockade of Src-mediated MAPK signaling pathway in ischemic stroke.

  • Runhui Tian‎ et al.
  • Aging‎
  • 2020‎

Stroke is a leading cause of death and disability worldwide. The purpose of this study was to investigate the possible role of the microRNA (miRNA or miR) miR-137 in ischemic stroke. miRNAs are very stable in the blood and may serve as potential diagnostic and therapeutic markers. Wild-type, Src-/- and miR-137-/- mice were treated with p38 siRNA or Erk2 siRNA to identify their roles in the inflammatory response, oxidative stress, neuronal injury and cognitive impairment in brain tissues of mice following middle cerebral artery occlusion (MCAO) operation. We evaluated several factors including; inflammatory responses, oxidative stress, viability and apoptosis of astrocytes in order to identify the functions of miR-137 and Src in ischemic stroke. miR-137 alleviated the inflammatory response, oxidative stress, neuronal injury and cognitive impairment, and restricted apoptosis via targeting Src and inactivating the MAPK signaling pathway. Furthermore, up-regulation of miR-137 or inhibition of Src inhibited the secretion of inflammatory factors, suppressed oxidative stress, and reduced apoptosis of astrocytes. In conclusion, our work suggests that, in mice, miR-137 confers neuroprotective effects against ischemic stroke via attenuation of oxidative, apoptotic, and inflammatory pathways through inhibiting Src-dependent MAPK signaling pathway.


COL6A6 interacted with P4HA3 to suppress the growth and metastasis of pituitary adenoma via blocking PI3K-Akt pathway.

  • Ruiqing Long‎ et al.
  • Aging‎
  • 2019‎

The role and mechanism of collagen type VI alpha 6 (COL6A6) on tumor growth and metastasis in pituitary adenoma (PA) was determined. COL6A6 was downregulated in PA tissues and cell lines, which was negatively associated with the expression of prolyl-4-hydroxylase alpha polypeptide III (P4HA3) in the progression of PA. Overexpression of COL6A6 significantly suppressed tumor growth and metastasis capacity in PA. In addition, P4HA3 worked as the upstream of the PI3K-Akt pathway to alleviate the antitumor activity of COL6A6 on the growth and metastasis of both AtT-20 and HP75 cells. Furthermore, the inhibitory effect of COL6A6 on cell proliferation, migration and invasion, and epithelial-mesenchymal transition (EMT) was reversed by P4HA3 overexpression or activation of the PI3K-Akt pathway induced by IGF-1 addition, which provided a new biomarker for clinical PA treatment.


Activated Drp1-mediated mitochondrial ROS influence the gut microbiome and intestinal barrier after hemorrhagic shock.

  • Chenyang Duan‎ et al.
  • Aging‎
  • 2020‎

A role of the mitochondrial dynamin-related protein (Drp1) on gut microbiome composition and intestinal barrier function after hemorrhagic shock has not been identified previously and thus addressed in this study. Here, we used a combination of 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling in WT and Drp1 KO mouse models to examine the functional impact of activated Drp1 on the gut microbiome as well as mitochondrial metabolic regulation after hemorrhagic shock. Our data showed that changes in mitochondrial Drp1 activity participated in the regulation of intestinal barrier function after hemorrhagic shock. Activated Drp1 significantly perturbed gut microbiome composition in the Bacteroidetes phylum. The abundance of short-chain fatty acid (SCFA) producing microbes, such as Bacteroides, Butyricimonas and Odoribacter, was markedly decreased in mice after shock, and was inversely correlated with both the distribution of the tight junction protein ZO1 and intestinal permeability. Together, these data suggest that Drp1 activation perturbs the gut microbiome community and SCFA production in a ROS-specific manner and thereby substantially disturbs tight junctions and intestinal barrier function after hemorrhagic shock. Our findings provide novel insights for targeting Drp1-mediated mitochondrial function as well as the microbiome in the treatment of intestinal barrier dysfunction after shock.


Comprehensive bioinformatics analysis identifies LAPTM5 as a potential blood biomarker for hypertensive patients with left ventricular hypertrophy.

  • Tiegang Li‎ et al.
  • Aging‎
  • 2022‎

Left ventricular hypertrophy (LVH) is a pivotal manifestation of hypertensive organ damage associated with an increased cardiovascular risk. However, early diagnostic biomarkers for assessing LVH in patients with hypertension (HT) remain indefinite. Here, multiple bioinformatics tools combined with an experimental verification strategy were used to identify blood biomarkers for hypertensive LVH. GSE74144 mRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database to screen candidate biomarkers, which were used to perform weighted gene co-expression network analysis (WGCNA) and establish the least absolute shrinkage and selection operator (LASSO) regression model, combined with support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, the potential blood biomarkers were verified in an animal model. A total of 142 hub genes in peripheral blood leukocytes were identified between HT with LVH and HT without LVH, which were mainly involved in the ATP metabolic process, oxidative phosphorylation, and mitochondrial structure and function. Notably, lysosomal associated transmembrane protein 5 (LAPTM5) was identified as the potential diagnostic marker of hypertensive LVH, which showed strong correlations with diverse marker sets of reactive oxygen species (ROS) and autophagy. RT-PCR validation of blood samples and cardiac magnetic resonance imaging (CMRI) showed that the expression of LAPTM5 was significantly higher in the HT with LVH model than in normal controls, LAPTM5 demonstrated a positive association with the left ventricle wall thickness as well as electrocardiogram (ECG) parameters widths of the QRS complex and QTc interval. In conclusion, LAPTM5 may be a potential biomarker for the diagnosis of LVH in patients with HT, and it can provide new insights for future studies on the occurrence and the molecular mechanisms of hypertensive LVH.


SPC25 overexpression promotes tumor proliferation and is prognostic of poor survival in hepatocellular carcinoma.

  • Baozhu Zhang‎ et al.
  • Aging‎
  • 2020‎

The nuclear division cycle 80 (NDC80) complex assures proper chromosome segregation during the cell cycle progression. SPC25 is a crucial component of NDC80, and its role in hepatocellular carcinoma (HCC) has been explored recently. This study characterized the differential expression of SPC25 in HCC patients of different races and HBV infection status.


Integrative transcriptomic and metabonomic profiling analyses reveal the molecular mechanism of Chinese traditional medicine huankuile suspension on TNBS-induced ulcerative colitis.

  • Zhenglan Han‎ et al.
  • Aging‎
  • 2021‎

This study aimed to investigate the therapeutic mechanism of Huankuile suspension (HKL), a typical traditional Chinese medicine, on ulcerative colitis (UC) in a rat model. UC model was established by 2,4,6-trinitrobenzene sulfonic acid (TNBS) enema. Then, the rats were randomly divided into three groups: water treated group, HKL treated group and 5- amino salicylic acid (5-ASA) treated group. After 7 days treatment, the histological score in the HKL treated group was comparable with those in the control group. qRT-PCR and western blot demonstrated that HKL could significantly decreased pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, while having less effect on anti-inflammatory cytokines, including IL-4 and IL-10. Transcriptomic analysis identified 670 differentially expressed genes (DEGs) between HKL treated UC rats and water treated UC rats. These DEGs were mostly related with immune response. Besides, metabonomic profile revealed 136 differential metabolites which were significantly enriched in "pyrimidine metabolism", "glutathione metabolism", "purine metabolism" and "citrate cycle". Finally, integrated analysis revealed that metabonomic pathways including "steroid hormone biosynthesis", "pyrimidine metabolism", "purine metabolism", and "glutathione metabolism" were altered by HKL at both transcriptomic and metabonomic levels. HKL could inhibit inflammation and regulate bile metabolism, pyrimidine metabolism, purine metabolism, glutathione metabolism and citrate cycle.


Transplanting Rac1-silenced bone marrow mesenchymal stem cells promote neurological function recovery in TBI mice.

  • Dongdong Huang‎ et al.
  • Aging‎
  • 2020‎

Bone marrow mesenchymal stem cells (BMMSCs)-based therapy has emerged as a promising novel therapy for Traumatic Brain Injury (TBI). However, the therapeutic quantity of viable implanted BMMSCs necessary to initiate efficacy is still undetermined. Increased oxidative stress following TBI, which leads to the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase signaling pathway, has been implicated in accounting for the diminished graft survival and therapeutic effect. To prove this assertion, we silenced the expression of NADPH subunits (p22-phox, p47-phox, and p67-phox) and small GTPase Rac1 in BMMSCs using shRNA. Our results showed that silencing these proteins significantly reduced oxidative stress and cell death/apoptosis, and promoted implanted BMMSCs proliferation after TBI. The most significant result was however seen with Rac1 silencing, which demonstrated decreased expression of apoptotic proteins, enhanced in vitro survival ratio, reduction in TBI lesional volume and significant improvement in neurological function post shRac1-BMMSCs transplantation. Additionally, two RNA-seq hub genes (VEGFA and MMP-2) were identified to play critical roles in shRac1-mediated cell survival. In summary, we propose that knockdown of Rac1 gene could significantly boost cell survival and promote the recovery of neurological functions after BMMSCs transplantation in TBI mice.


Triterpene acid from Antrodia camphorata alleviates inflammation in acute liver injury.

  • Chenxi Cao‎ et al.
  • Aging‎
  • 2023‎

This study aimed to investigate the role and mechanism of Anctin A, the Antrodia camphorata terpene component, in resisting liver injury. Network pharmacology analysis revealed that MAPK3 was the major action target of Antcin A. Furthermore, experimental research suggested that Antcin A suppressed mouse liver injury, reduced the inflammatory factor levels, and enhanced the anti-oxidative capacity. Meanwhile, it suppressed the expression of MAPK3 and the downstream NF-κB signal, while it did not significantly affect the expression of MAPK1. Based on network pharmacology method, this study discovers that the anti-liver injury effect of Antcin A is mainly related to MAPK3, and that Antcin A can suppress the activation of MAPK3 and its downstream NF-κB to inhibit mouse ALI.


Effects of periostin deficiency on kidney aging and lipid metabolism.

  • Jung Nam An‎ et al.
  • Aging‎
  • 2021‎

Periostin plays a crucial role in fibrosis, which is involved in kidney aging. A few studies have shown that lipid metabolism is involved in kidney aging. We investigated the role of periostin in lipid metabolism during kidney aging. Renal function, fibrosis, and inflammatory markers were studied using urine, blood, and tissue samples from wild-type (WT) C57BL/6 mice and Postn-null mice of 2 and 24 months of age. Lipids were quantitatively profiled using liquid chromatography-tandem mass spectrometry in the multiple reaction monitoring mode. Renal function was worse and tubular atrophy/interstitial fibrosis, periostin expression, and inflammatory and fibrotic markers were more severe in aged WT mice than in young WT mice. In aged Postn-null mice, these changes were mitigated. Thirty-five differentially regulated lipids were identified. Phosphatidylcholines, cholesteryl ester, cholesterol, ceramide-1-phosphate, and CCL5 expression were significantly higher in aged WT mice than in aged Postn-null mice. Particularly, linoleic acid, linolenic acid, arachidonic acid, and docosahexaenoic acid differed strongly between the two groups. Lysophosphatidylcholine acyltransferase 2, which converts lysophosphatidylcholine to phosphatidylcholine, was significantly higher in aged WT mice than in aged Postn-null mice. Periostin expression in the kidneys increased with age, and periostin ablation delayed aging. Changes in lipids and their metabolism were found in Postn-null mice. Further research on the precise mechanisms of and relationships between lipid expression and metabolism, kidney aging, and periostin expression is warranted.


Age-related changes in tissue macrophages precede cardiac functional impairment.

  • Alexander R Pinto‎ et al.
  • Aging‎
  • 2014‎

Cardiac tissue macrophages (cTMs) are abundant in the murine heart but the extent to which the cTM phenotype changes with age is unknown. This study characterizes aging-dependent phenotypic changes in cTM subsets. Using theCx3cr1(GFP/+) mouse reporter line where GFP marks cTMs, and the tissue macrophage marker Mrc1, we show that two major cardiac tissue macrophage subsets, Mrc1-GFP(hi) and Mrc1+GFP(hi) cTMs, are present in the young (<10 week old) mouse heart, and a third subset, Mrc1+GFP(lo), comprises ~50% of total Mrc1+ cTMs from 30 weeks of age. Immunostaining and functional assays show that Mrc1+ cTMs are the principal myeloid sentinels in the mouse heart and that they retain proliferative capacity throughout life. Gene expression profiles of the two Mrc1+ subsets also reveal that Mrc1+GFP(lo) cTMs have a decreased number of immune response genes (Cx3cr1, Lpar6, CD9, Cxcr4, Itga6 and Tgfβr1), and an increased number of fibrogenic genes (Ltc4s, Retnla, Fgfr1, Mmp9 and Ccl24), consistent with a potential role for cTMs in cardiac fibrosis. These findings identify early age-dependent gene expression changes in cTMs, with significant implications for cardiac tissue injury responses and aging-associated cardiac fibrosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: