Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 434 papers

Ice and ocean constraints on early human migrations into North America along the Pacific coast.

  • Summer K Praetorius‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.


Landscape dynamics and diversification of the megadiverse South American freshwater fish fauna.

  • Fernanda A S Cassemiro‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Landscape dynamics are widely thought to govern the tempo and mode of continental radiations, yet the effects of river network rearrangements on dispersal and lineage diversification remain poorly understood. We integrated an unprecedented occurrence dataset of 4,967 species with a newly compiled, time-calibrated phylogeny of South American freshwater fishes-the most species-rich continental vertebrate fauna on Earth-to track the evolutionary processes associated with hydrogeographic events over 100 Ma. Net lineage diversification was heterogeneous through time, across space, and among clades. Five abrupt shifts in net diversification rates occurred during the Paleogene and Miocene (between 30 and 7 Ma) in association with major landscape evolution events. Net diversification accelerated from the Miocene to the Recent (c. 20 to 0 Ma), with Western Amazonia having the highest rates of in situ diversification, which led to it being an important source of species dispersing to other regions. All regional biotic interchanges were associated with documented hydrogeographic events and the formation of biogeographic corridors, including the Early Miocene (c. 23 to 16 Ma) uplift of the Serra do Mar and Serra da Mantiqueira and the Late Miocene (c. 10 Ma) uplift of the Northern Andes and associated formation of the modern transcontinental Amazon River. The combination of high diversification rates and extensive biotic interchange associated with Western Amazonia yielded its extraordinary contemporary richness and phylogenetic endemism. Our results support the hypothesis that landscape dynamics, which shaped the history of drainage basin connections, strongly affected the assembly and diversification of basin-wide fish faunas.


Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange.

  • Juan D Carrillo‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

The interchange between the previously disconnected faunas of North and South America was a massive experiment in biological invasion. A major gap in our understanding of this invasion is why there was a drastic increase in the proportion of mammals of North American origin found in South America. Four nonmutually exclusive mechanisms may explain this asymmetry: 1) Higher dispersal rate of North American mammals toward the south, 2) higher origination of North American immigrants in South America, 3) higher extinction of mammals with South American origin, and 4) similar dispersal rate but a larger pool of native taxa in North versus South America. We test among these mechanisms by analyzing ∼20,000 fossil occurrences with Bayesian methods to infer dispersal and diversification rates and taxonomic selectivity of immigrants. We find no differences in the dispersal and origination rates of immigrants. In contrast, native South American mammals show higher extinction. We also find that two clades with North American origin (Carnivora and Artiodactyla) had significantly more immigrants in South America than other clades. Altogether, the asymmetry of the interchange was not due to higher origination of immigrants in South America as previously suggested, but resulted from higher extinction of native taxa in southern South America. These results from one of the greatest biological invasions highlight how biogeographic processes and biotic interactions can shape continental diversity.


Paleolakes and socioecological implications of last glacial "greening" of the South African interior.

  • Andrew S Carr‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Determining the timing and drivers of Pleistocene hydrological change in the interior of South Africa is critical for testing hypotheses regarding the presence, dynamics, and resilience of human populations. Combining geological data and physically based distributed hydrological modeling, we demonstrate the presence of large paleolakes in South Africa's central interior during the last glacial period, and infer a regional-scale invigoration of hydrological networks, particularly during marine isotope stages 3 and 2, most notably 55 to 39 ka and 34 to 31 ka. The resulting hydrological reconstructions further permit investigation of regional floral and fauna responses using a modern analog approach. These suggest that the climate change required to sustain these water bodies would have replaced xeric shrubland with more productive, eutrophic grassland or higher grass-cover vegetation, capable of supporting a substantial increase in ungulate diversity and biomass. The existence of such resource-rich landscapes for protracted phases within the last glacial period likely exerted a recurrent draw on human societies, evidenced by extensive pan-side artifact assemblages. Thus, rather than representing a perennially uninhabited hinterland, the central interior's underrepresentation in late Pleistocene archeological narratives likely reflects taphonomic biases stemming from a dearth of rockshelters and regional geomorphic controls. These findings suggest that South Africa's central interior experienced greater climatic, ecological, and cultural dynamism than previously appreciated and potential to host human populations whose archaeological signatures deserve systematic investigation.


Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa.

  • Tyler S Brown‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating whole-genome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.


Brain volume, energy balance, and cardiovascular health in two nonindustrial South American populations.

  • Hillard Kaplan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Little is known about brain aging or dementia in nonindustrialized environments that are similar to how humans lived throughout evolutionary history. This paper examines brain volume (BV) in middle and old age among two indigenous South American populations, the Tsimane and Moseten, whose lifestyles and environments diverge from those in high-income nations. With a sample of 1,165 individuals aged 40 to 94, we analyze population differences in cross-sectional rates of decline in BV with age. We also assess the relationships of BV with energy biomarkers and arterial disease and compare them against findings in industrialized contexts. The analyses test three hypotheses derived from an evolutionary model of brain health, which we call the embarrassment of riches (EOR). The model hypothesizes that food energy was positively associated with late life BV in the physically active, food-limited past, but excess body mass and adiposity are now associated with reduced BV in industrialized societies in middle and older ages. We find that the relationship of BV with both non-HDL cholesterol and body mass index is curvilinear, positive from the lowest values to 1.4 to 1.6 SDs above the mean, and negative from that value to the highest values. The more acculturated Moseten exhibit a steeper decrease in BV with age than Tsimane, but still shallower than US and European populations. Lastly, aortic arteriosclerosis is associated with lower BV. Complemented by findings from the United States and Europe, our results are consistent with the EOR model, with implications for interventions to improve brain health.


Comparative genomics uncovers the evolutionary history, demography, and molecular adaptations of South American canids.

  • Daniel E Chavez‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.


Epidemiology of Mycobacterium bovis infection in free-ranging rhinoceros in Kruger National Park, South Africa.

  • Rebecca Dwyer‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Mycobacterium bovis infection, which is a prominent cause of bovine tuberculosis, has been confirmed by mycobacterial culture in African rhinoceros species in Kruger National Park (KNP), South Africa. In this population-based study of the epidemiology of M. bovis in 437 African rhinoceros (Diceros bicornis, Ceratotherium simum), we report an estimated prevalence of 15.4% (95% CI: 10.4 to 21.0%), based on results from mycobacterial culture and an antigen-specific interferon gamma release assay from animals sampled between 2016 and 2020. A significant spatial cluster of cases was detected near the southwestern park border, although infection was widely distributed. Multivariable logistic regression models, including demographic and spatiotemporal variables, showed a significant, increasing probability of M. bovis infection in white rhinoceros based on increased numbers of African buffalo (Syncerus caffer) herds in the vicinity of the rhinoceros sampling location. Since African buffaloes are important maintenance hosts for M. bovis in KNP, spillover of infection from these hosts to white rhinoceros sharing the environment is suspected. There was also a significantly higher proportion of M. bovis infection in black rhinoceros in the early years of the study (2016–2018) than in 2019 and 2020, which coincided with periods of intense drought, although other temporal factors could be implicated. Species of rhinoceros, age, and sex were not identified as risk factors for M. bovis infection. These study findings provide a foundation for further epidemiological investigation of M. bovis, a multihost pathogen, in a complex ecosystem that includes susceptible species that are threatened and endangered.


Evidence of nitrate-based nighttime atmospheric nucleation driven by marine microorganisms in the South Pacific.

  • Guillaume Chamba‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Our understanding of ocean-cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air-sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.


Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South.

  • Yuyu Zhou‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Information on urban built-up infrastructure is essential to understand the role of cities in shaping environmental, economic, and social outcomes. The lack of data on built-up heights over large areas has limited our ability to characterize urban infrastructure and its spatial variations across the world. Here, we developed a global atlas of urban built-up heights circa 2015 at 500-m resolution from the Sentinel-1 Ground Range Detected satellite data. Results show extreme gaps in per capita urban built-up infrastructure in the Global South compared with the global average, and even larger gaps compared with the average levels in the Global North. Per capita urban built-up infrastructures in some countries in the Global North are more than 30 times higher than those in the Global South. The results also show that the built-up infrastructure in 45 countries in the Global North combined, with ∼16% of the global population, is roughly equivalent to that of 114 countries in the Global South, with ∼74% of the global population. The inequality in urban built-up infrastructure, as measured by an inequality index, is large in most countries, but the largest in the Global South compared with the Global North. Our analysis reveals the scale of infrastructure demand in the Global South that is required in order to meet sustainable development goals.


An eosimiid primate of South Asian affinities in the Paleogene of Western Amazonia and the origin of New World monkeys.

  • Laurent Marivaux‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Recent fossil discoveries in Western Amazonia revealed that two distinct anthropoid primate clades of African origin colonized South America near the Eocene/Oligocene transition (ca. 34 Ma). Here, we describe a diminutive fossil primate from Brazilian Amazonia and suggest that, surprisingly, a third clade of anthropoids was involved in the Paleogene colonization of South America by primates. This new taxon, Ashaninkacebus simpsoni gen. et sp. nov., has strong dental affinities with Asian African stem anthropoids: the Eosimiiformes. Morphology-based phylogenetic analyses of early Old World anthropoids and extinct and extant New World monkeys (platyrrhines) support relationships of both Ashaninkacebus and Amamria (late middle Eocene, North Africa) to the South Asian Eosimiidae. Afro-Arabia, then a mega island, played the role of a biogeographic stopover between South Asia and South America for anthropoid primates and hystricognathous rodents. The earliest primates from South America bear little adaptive resemblance to later Oligocene-early Miocene platyrrhine monkeys, and the scarcity of available paleontological data precludes elucidating firmly their affinities with or within Platyrrhini. Nonetheless, these data shed light on some of their life history traits, revealing a particularly small body size and a diet consisting primarily of insects and possibly fruit, which would have increased their chances of survival on a natural floating island during this extraordinary over-water trip to South America from Africa. Divergence-time estimates between Old and New World taxa indicate that the transatlantic dispersal(s) could source in the intense flooding events associated with the late middle Eocene climatic optimum (ca. 40.5 Ma) in Western Africa.


Community-engaged ancient DNA project reveals diverse origins of 18th-century African descendants in Charleston, South Carolina.

  • Raquel E Fleskes‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

In this study, we present the results of community-engaged ancient DNA research initiated after the remains of 36 African-descended individuals dating to the late 18th century were unearthed in the port city of Charleston, South Carolina. The Gullah Society of Charleston, along with other Charleston community members, initiated a collaborative genomic study of these ancestors of presumed enslaved status, in an effort to visibilize their histories. We generated 18 low-coverage genomes and 31 uniparental haplotypes to assess their genetic origins and interrelatedness. Our results indicate that they have predominantly West and West-Central African genomic ancestry, with one individual exhibiting some genomic affiliation with populations in the Americas. Most were assessed as genetic males, and no autosomal kin were identified among them. Overall, this study expands our understanding of the colonial histories of African descendant populations in the US South.


Integration of ancient DNA with transdisciplinary dataset finds strong support for Inca resettlement in the south Peruvian coast.

  • Jacob L Bongers‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Ancient DNA (aDNA) analysis provides a powerful means of investigating human migration, social organization, and a plethora of other crucial questions about humanity's past. Recently, specialists have suggested that the ideal research design involving aDNA would include multiple independent lines of evidence. In this paper, we adopt a transdisciplinary approach integrating aDNA with archaeological, biogeochemical, and historical data to investigate six individuals found in two cemeteries that date to the Late Horizon (1400 to 1532 CE) and Colonial (1532 to 1825 CE) periods in the Chincha Valley of southern Peru. Genomic analyses indicate that these individuals are genetically most similar to ancient and present-day populations from the north Peruvian coast located several hundred kilometers away. These genomic data are consistent with 16th century written records as well as ceramic, textile, and isotopic data. These results provide some of the strongest evidence yet of state-sponsored resettlement in the pre-Colonial Andes. This study highlights the power of transdisciplinary research designs when using aDNA data and sets a methodological standard for investigating ancient mobility in complex societies.


Global gene flow releases invasive plants from environmental constraints on genetic diversity.

  • Annabel L Smith‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


The Hippo pathway regulates axis formation and morphogenesis in Hydra.

  • Maria Brooun‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian Hydra the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional coactivator YAP, inhibits the initiation of budding in Hydra and is regulated by Hydra LATS. In addition, we show functions of the Hippo pathway in regulation of actin organization and cell proliferation in Hydra. We hypothesize that the Hippo pathway served as a link between continuous cell division, cell density, and axis formation early in metazoan evolution.


Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii.

  • E Keats Shwab‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

A majority of emerging infectious diseases in humans are zoonoses. Understanding factors that influence the emergence and transmission of zoonoses is pivotal for their prevention and control. Toxoplasma gondii is one of the most widespread zoonotic pathogens known today. Whereas only a few genotypes of T. gondii dominate in the Northern Hemisphere, many genotypes coexist in South America. Furthermore, T. gondii strains from South America are more likely to be virulent than those from the Northern Hemisphere. However, it is not clear what factor(s) shaped modern-day genetic diversity and virulence of T. gondii Here, our analysis suggests that the rise and expansion of farming in the past 11,000 years established the domestic cat/mouse transmission cycle for T. gondii, which has undoubtedly played a significant role in the selection of certain linages of T. gondii Our mathematical simulations showed that within the domestic transmission cycle, intermediately mouse-virulent T. gondii genotypes have an adaptive advantage and eventually become dominant due to a balance between lower host mortality and the ability to superinfect mice previously infected with a less virulent T. gondii strain. Our analysis of the global type II lineage of T. gondii suggests its Old World origin but recent expansion in North America, which is likely the consequence of global human migration and trading. These results have significant implications concerning transmission and evolution of zoonotic pathogens in the rapidly expanding anthropized environment demanded by rapid growth of the human population and intensive international trading at present and in the future.


Non-White scientists appear on fewer editorial boards, spend more time under review, and receive fewer citations.

  • Fengyuan Liu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Disparities continue to pose major challenges in various aspects of science. One such aspect is editorial board composition, which has been shown to exhibit racial and geographical disparities. However, the literature on this subject lacks longitudinal studies quantifying the degree to which the racial composition of editors reflects that of scientists. Other aspects that may exhibit racial disparities include the time spent between the submission and acceptance of a manuscript and the number of citations a paper receives relative to textually similar papers, but these have not been studied to date. To fill this gap, we compile a dataset of 1,000,000 papers published between 2001 and 2020 by six publishers, while identifying the handling editor of each paper. Using this dataset, we show that most countries in Asia, Africa, and South America (where the majority of the population is ethnically non-White) have fewer editors than would be expected based on their share of authorship. Focusing on US-based scientists reveals Black as the most underrepresented race. In terms of acceptance delay, we find, again, that papers from Asia, Africa, and South America spend more time compared to other papers published in the same journal and the same year. Regression analysis of US-based papers reveals that Black authors suffer from the greatest delay. Finally, by analyzing citation rates of US-based papers, we find that Black and Hispanic scientists receive significantly fewer citations compared to White ones doing similar research. Taken together, these findings highlight significant challenges facing non-White scientists.


Coexistence within one cell of microvillous and ciliary phototransductions across M1- through M6-IpRGCs.

  • Guang Li‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Intrinsically photosensitive retinal ganglion cells (ipRGCs) serve as primary photoceptors by expressing the photopigment, melanopsin, and also as retinal relay neurons for rod and cone signals en route to the brain, in both cases for the purpose of non-image vision as well as aspects of image vision. So far, six subtypes of ipRGCs (M1 through M6) have been characterized. Regarding their phototransduction mechanisms, we have previously found that, unconventionally, rhabdomeric (microvillous) and ciliary signaling motifs co-exist within a given M1-, M2-, and M4-ipRGC, with the first mechanism involving PLCβ4 and TRPC6,7 channels and the second involving cAMP and HCN channels. We have now examined M3-, M5-, and M6-cells and found that each cell likewise uses both signaling pathways for phototransduction, despite differences in the percentage representation by each pathway in a given ipRGC subtype for bright-flash responses (and saturated except for M6-cells). Generally, M3- and M5-cells show responses quite similar in kinetics to M2-responses, and M6-cell responses resemble broadly those of M1-cells although much lower in absolute sensitivity and amplitude. Therefore, similar to rod and cone subtypes in image vision, ipRGC subtypes possess the same phototransduction mechanism(s) even though they do not show microvilli or cilia morphologically.


Biodiversity impacts and conservation implications of urban land expansion projected to 2050.

  • Rohan D Simkin‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

SignificanceUnderstanding the impacts of urbanization and the associated urban land expansion on species is vital for informed urban planning that minimizes biodiversity loss. Predicting habitat that will be lost to urban land expansion for over 30,000 species under three different future scenarios, we find that up to 855 species are directly threatened due to unmitigated urbanization. Our projections pinpoint rapidly urbanizing regions of sub-Saharan Africa, South America, Mesoamerica, and Southeast Asia where, without careful planning, urbanization is expected to cause particularly large biodiversity loss. Our findings highlight the urgent need for an increased focus on urban land in global conservation strategies and identify high-priority areas for this engagement.


3D printing of responsive chiral photonic nanostructures.

  • Kyle George‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Finely controlled flow forces in extrusion-based additive manufacturing can be exploited to program the self-assembly of malleable nanostructures in soft materials by integrating bottom-up design into a top-down processing approach. Here, we leverage the processing parameters offered by direct ink-writing (DIW) to reconfigure the photonic chiral nematic liquid crystalline phase in hydroxypropyl cellulose (HPC) solutions prior to deposition on the writing substrate to direct structural evolution from a particular initial condition. Moreover, we incorporate polyethylene glycol (PEG) into iridescent HPC inks to form a physically cross-linked network capable of inducing kinetic arrest of the cholesteric/chiral pitch at length scales that selectively reflect light throughout the visible spectrum. Based on thorough rheological measurements, we have found that printing the chiral inks at a shear rate where HPC molecules adopt pseudonematic state results in uniform chiral recovery following flow cessation and enhanced optical properties in the solid state. Printing chiral inks at high shear rates, on the other hand, shifts the monochromatic appearance of the extruded filaments to a highly angle-dependent state, suggesting a preferred orientation of the chiral domains. The optical response of these filaments when exposed to mechanical deformation can be used in the development of optical sensors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: