Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Antiproliferative effects of the CDK6 inhibitor PD0332991 and its effect on signaling networks in gastric cancer cells.

  • Daguang Wang‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

PD0332991 (palbociclib/Ibrance®) is a cyclin-dependent kinase (CDK)4/6 inhibitor that has recently been approved for the treatment of estrogen receptor‑positive advanced breast cancer. The present study investigated the antiproliferative effects of PD0332991 on gastric cancer (GC) cells and the underlying molecular mechanisms. The activity of PD0332991 was tested in several GC cell lines, including AGS, KATO‑Ⅲ, NCI‑N87 and HS746T. Growth inhibitory activity of PD0332991, alone or in combination with fluorouracil (5‑FU), was measured by MTT assay. The effects of PD0332991 on cell cycle progression were analyzed by flow cytometry and western blotting. Protein pathway array and Ingenuity Pathway Analysis were used to identify signaling pathways that may mediate the antiproliferative effects of PD0332991. PD0332991 inhibited proliferation in a dose‑dependent manner and enhanced the activity of 5‑FU in all GC cell lines tested. Cells treated with PD0332991 exhibited cell cycle arrest in G1 phase of the cell cycle, whereas the number of cells in G2/M phase was decreased. PD0332991 also inhibited CDK6‑specific phosphorylation of retinoblastoma on Ser780, reduced the expression of cyclin D1, and induced expression of p53 and p27. Furthermore, 31 proteins were identified, the expression of which was significantly altered following treatment with PD0332991 in at least three cell lines. Pathway analysis indicated that the altered proteins were frequently associated with cell death, cell cycle and the molecular mechanism of cancer. The results of the present study indicated that PD0332991 may inhibit cell proliferation via modulation of the cell cycle, and may affect numerous oncogenic signaling pathways. Therefore, PD0332991 may be considered effective for the treatment of GC.


Brain-derived neurotrophic factor inhibits hyperglycemia-induced apoptosis and downregulation of synaptic plasticity-related proteins in hippocampal neurons via the PI3K/Akt pathway.

  • Yuan Zhong‎ et al.
  • International journal of molecular medicine‎
  • 2019‎

It is not known whether brain‑derived neurotrophic factor (BDNF) protects hippocampal neurons from high glucose‑induced apoptosis and/or synaptic plasticity dysfunction. The present study aimed to assess whether BDNF exerted a neuroprotective effect in rat hippocampal neurons exposed to high glucose and examine the underlying mechanisms. The apoptosis of primary hippocampal neurons was assessed by Annexin V‑fluorescein isothiocyanate/propidium iodide staining. The mRNA and protein expression levels were measured by reverse transcription‑-quantitative polymerase chain reaction and western blot experiments, respectively. Synaptic plasticity was evaluated by the immunolocalization of synaptophysin (Syn). Exposure of the hippocampal neurons to high glucose (75 mM for 72 h) resulted in cell apoptosis, decreased mRNA and protein expression levels of three synaptic plasticity‑related proteins (Syn, Arc and cyclic AMP response element‑binding protein), and changes in the cellular distribution of Syn, indicating loss of synaptic density. These effects of high glucose were partially or completely reversed by prior administration of BDNF (50 ng/ml for 24 h). Pre‑treatment with wortmannin, a phosphatidylinositol‑3‑kinase (PI3K) inhibitor, suppressed the ability of BDNF to inhibit the effects of high glucose. In addition, BDNF significantly upregulated the tropomyosin‑related kinase B, its cognate receptor, Akt and phosphorylated Akt at the protein levels under high glucose conditions. In conclusion, high glucose induced apoptosis and downregulated synaptic plasticity‑related proteins in hippocampal neurons. These effects were reversed by BDNF via the PI3K/Akt signaling pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: