Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Acute psychosocial stress alters thalamic network centrality.

  • Janis Reinelt‎ et al.
  • NeuroImage‎
  • 2019‎

Acute stress triggers a broad psychophysiological response that is adaptive if rapidly activated and terminated. While the brain controls the stress response, it is strongly affected by it. Previous research of stress effects on brain activation and connectivity has mainly focused on pre-defined brain regions or networks, potentially missing changes in the rest of the brain. We here investigated how both stress reactivity and stress recovery are reflected in whole-brain network topology and how changes in functional connectivity relate to other stress measures. Healthy young males (n = 67) completed the Trier Social Stress Test or a control task. From 60 min before until 105 min after stress onset, blocks of resting-state fMRI were acquired. Subjective, autonomic, and endocrine measures of the stress response were assessed throughout the experiment. Whole-brain network topology was quantified using Eigenvector centrality (EC) mapping, which detects central hubs of a network. Stress influenced subjective affect, autonomic activity, and endocrine measures. EC differences between groups as well as before and after stress exposure were found in the thalamus, due to widespread connectivity changes in the brain. Stress-driven EC increases in the thalamus were significantly correlated with subjective stress ratings and showed non-significant trends for a correlation with heart rate variability and saliva cortisol. Furthermore, increases in thalamic EC and in saliva cortisol persisted until 105 min after stress onset. We conclude that thalamic areas are central for information processing after stress exposure and may provide an interface for the stress response in the rest of the body and in the mind.


Predicting brain-age from multimodal imaging data captures cognitive impairment.

  • Franziskus Liem‎ et al.
  • NeuroImage‎
  • 2017‎

The disparity between the chronological age of an individual and their brain-age measured based on biological information has the potential to offer clinically relevant biomarkers of neurological syndromes that emerge late in the lifespan. While prior brain-age prediction studies have relied exclusively on either structural or functional brain data, here we investigate how multimodal brain-imaging data improves age prediction. Using cortical anatomy and whole-brain functional connectivity on a large adult lifespan sample (N=2354, age 19-82), we found that multimodal data improves brain-based age prediction, resulting in a mean absolute prediction error of 4.29 years. Furthermore, we found that the discrepancy between predicted age and chronological age captures cognitive impairment. Importantly, the brain-age measure was robust to confounding effects: head motion did not drive brain-based age prediction and our models generalized reasonably to an independent dataset acquired at a different site (N=475). Generalization performance was increased by training models on a larger and more heterogeneous dataset. The robustness of multimodal brain-age prediction to confounds, generalizability across sites, and sensitivity to clinically-relevant impairments, suggests promising future application to the early prediction of neurocognitive disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: