Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Resource asynchrony and landscape homogenization as drivers of virulence evolution: The case of a directly transmitted disease in a social host.

  • Tobias Kürschner‎ et al.
  • Ecology and evolution‎
  • 2024‎

Throughout the last decades, the emergence of zoonotic diseases and the frequency of disease outbreaks have increased substantially, fuelled by habitat encroachment and vectors overlapping with more hosts due to global change. The virulence of pathogens is one key trait for successful invasion. In order to understand how global change drivers such as habitat homogenization and climate change drive pathogen virulence evolution, we adapted an established individual-based model of host-pathogen dynamics. Our model simulates a population of social hosts affected by a directly transmitted evolving pathogen in a dynamic landscape. Pathogen virulence evolution results in multiple strains in the model that differ in their transmission capability and lethality. We represent the effects of global change by simulating environmental changes both in time (resource asynchrony) and space (homogenization). We found an increase in pathogenic virulence and a shift in strain dominance with increasing landscape homogenization. Our model further indicated that lower virulence is dominant in fragmented landscapes, although pulses of highly virulent strains emerged under resource asynchrony. While all landscape scenarios favoured co-occurrence of low- and high-virulent strains, the high-virulence strains capitalized on the possibility for transmission when host density increased and were likely to become dominant. With asynchrony likely to occur more often due to global change, our model showed that a subsequent evolution towards lower virulence could lead to some diseases becoming endemic in their host populations.


Unsustainable anthropogenic mortality disrupts natal dispersal and promotes inbreeding in leopards.

  • Vincent N Naude‎ et al.
  • Ecology and evolution‎
  • 2020‎

Anthropogenic mortality of wildlife is typically inferred from measures of the absolute decline in population numbers. However, increasing evidence suggests that indirect demographic effects including changes to the age, sex, and social structure of populations, as well as the behavior of survivors, can profoundly impact population health and viability. Specifically, anthropogenic mortality of wildlife (especially when unsustainable) and fragmentation of the spatial distribution of individuals (home-ranges) could disrupt natal dispersal mechanisms, with long-term consequences to genetic structure, by compromising outbreeding behavior and gene flow. We investigate this threat in African leopards (Panthera pardus pardus), a polygynous felid with male-biased natal dispersal. Using a combination of spatial (home-range) and genetic (21 polymorphic microsatellites) data from 142 adult leopards, we contrast the structure of two South African populations with markedly different histories of anthropogenically linked mortality. Home-range overlap, parentage assignment, and spatio-genetic autocorrelation together show that historical exploitation of leopards in a recovering protected area has disrupted and reduced subadult male dispersal, thereby facilitating opportunistic male natal philopatry, with sons establishing territories closer to their mothers and sisters. The resultant kin-clustering in males of this historically exploited population is comparable to that of females in a well-protected reserve and has ultimately led to localized inbreeding. Our findings demonstrate novel evidence directly linking unsustainable anthropogenic mortality to inbreeding through disrupted dispersal in a large, solitary felid and expose the genetic consequences underlying this behavioral change. We therefore emphasize the importance of managing and mitigating the effects of unsustainable exploitation on local populations and increasing habitat fragmentation between contiguous protected areas by promoting in situ recovery and providing corridors of suitable habitat that maintain genetic connectivity.


Litter accumulation alters the abiotic environment and drives community successional changes in two fenced grasslands in Inner Mongolia.

  • Dongjie Hou‎ et al.
  • Ecology and evolution‎
  • 2019‎

Fencing is an effective and practical method for restoring degraded grasslands in northern China. However, little is known about the role of excess litter accumulation due to long-term fencing in regulating abiotic environment and driving changes in community structure and function. We conducted a three-year field experiment in two fenced grasslands in Inner Mongolia, and monitored light quantity, soil temperature, and soil moisture continuously, and determined community height, community aboveground net primary productivity (ANPP), and the relative dominance of different plant functional groups. Litter accumulation reduced light quantity and soil temperature but increased soil moisture. The regulating effects of litter accumulation on soil temperature and soil moisture fluctuated temporally and gradually weakened over the growing season. Litter accumulation also altered community vertical structure and function by increasing community height and ANPP. The increase in soil moisture increased the relative dominance of rhizome grasses but suppressed bunch grasses, thereby shifting bunch grass grasslands to rhizome grass grasslands. Our findings provide a potential mechanism for community succession in the context of litter accumulation in fenced grasslands and indicate that the vegetation and ecosystem services of degraded grasslands are improved after appropriate fencing.


Species integrity, introgression, and genetic variation across a coral reef fish hybrid zone.

  • Ashton Gainsford‎ et al.
  • Ecology and evolution‎
  • 2020‎

Hybridization and introgression are evolutionarily significant phenomena breaking down species boundaries. "Hybrid zones" (regions of species overlap and hybridization) enable quantification of hybridization frequency and examination of mechanisms driving and maintaining gene flow. The hybrid anemonefish Amphiprion leucokranos is found where parent species (A. chrysopterus; A. sandaracinos) distributions overlap. Here, we examine geographic variation in hybridization and introgression, and potential impacts on parent species integrity through assessing relative abundance, social group composition, and genetic structure (mtDNA cytochrome b, 21 microsatellite loci) of taxa at three hybrid zone locations: Kimbe Bay (KB) and Kavieng (KA), Papua New Guinea; the Solomon Islands (SO). Relative abundances of and size disparities between parent species apparently drive hybridization frequency, introgression patterns, and genetic composition of taxa. Conspecific groups are most common in KB (65%) where parent species are similarly abundant. Conversely, mixed species groups dominate SO (82%), where A. chrysopterus is more abundant. Hybrids most commonly cohabit with A. sandaracinos in KB (17%), but with A. chrysopterus in KA (22%) and SO (50%). Genetic differentiation (nDNA) analyses indicate that parent species remain distinct, despite ongoing hybridization and hybrids are genetically similar to A. sandaracinos-resulting from persistent backcrossing with this smallest species. This study shows that hybridization outcomes may depend on the social and ecological context in which taxa hybridize, where relative abundance and disparate size of parent species explain the frequency and patterns of hybridization and introgression in the A. leucokranos hybrid zone, reflecting size-based dominance behaviors of anemonefish social groups.


Can variation in standard metabolic rate explain context-dependent performance of farmed Atlantic salmon offspring?

  • Grethe Robertsen‎ et al.
  • Ecology and evolution‎
  • 2019‎

Escaped farmed Atlantic salmon interbreed with wild Atlantic salmon, leaving offspring that often have lower success in nature than pure wild salmon. On top of this, presence of farmed salmon descendants can impair production of wild-type recruits. We hypothesize that both these effects connect with farmed salmon having acquired higher standard metabolic rates (SMR, the energetic cost of self-maintenance) during domestication. Fitness-related advantages of phenotypic traits associated with both high SMR and farmed salmon (e.g., social dominance) depend on environmental conditions, such as food availability. We hypothesize that farmed offspring have an advantage at high food availability due to, for example, dominance behavior but suffer increased risks of starvation when food is scarce because this behavior is energy-demanding. To test these hypotheses, we first compare embryo SMR of pure farmed, farmed-wild hybrids and pure wild offspring. Next, we test early-life performance (in terms of survival and growth) of hybrids relative to that of their wild half-siblings, as well as their competitive abilities, in semi-natural conditions of high and low food availability. Finally, we test how SMR affects early-life performance at high and low food availability. We find inconclusive support for the hypothesis that domestication has induced increased SMR. Further, wild and hybrid juveniles had similar survival and growth in the semi-natural streams. Yet, the presence of hybrids led to decreased survival of their wild half-siblings. Contrary to our hypothesis about context-dependency, these effects were not modified by food availability. However, wild juveniles with high SMR had decreased survival when food was scarce, but there was no such effect at high food availability. This study provides further proof that farmed salmon introgression may compromise the viability of wild salmon populations. We cannot, however, conclude that this is connected to alterations in the metabolic phenotype of farmed salmon.


Postdispersal nepotism in male long-tailed macaques (Macaca fascicularis).

  • Livia Gerber‎ et al.
  • Ecology and evolution‎
  • 2016‎

Cooperative behaviors are promoted by kin selection if the costs to the actor are smaller than the fitness benefits to the recipient, weighted by the coefficient of relatedness. In primates, cooperation occurs primarily among female dyads. Due to male dispersal before sexual maturity in many primate species, however, it is unknown whether there are sufficient opportunities for selective tolerance and occasional coalitionary support for kin selection to favor male nepotistic support. We studied the effect of the presence of male kin on correlates of male reproductive success (residence time, duration of high dominance rank) in non-natal male long-tailed macaques (Macaca fascicularis). We found that "related" (i.e., related at the half-sibling level or higher) males in a group have a significantly higher probability to remain in the non-natal group compared to males without relatives. Moreover, males stayed longer in a group when a relative was present at group entry or joined the same group within 3 months upon arrival. Males with co-residing relatives also maintained a high rank for longer than those without. To our knowledge, this is the first demonstration of a potential nepotistic effect on residence and rank maintenance among non-natal males in a social system without long-term alliances.


Brain gene expression analyses in virgin and mated queens of fire ants reveal mating-independent and socially regulated changes.

  • Travis L Calkins‎ et al.
  • Ecology and evolution‎
  • 2018‎

Transcriptomes of dissected brains from virgin alate and dealate mated queens from polygyne fire ants (Solenopsis invicta) were analyzed and compared. Thirteen genes were upregulated in mated queen brain, and nine were downregulated. While many of the regulated genes were either uncharacterized or noncoding RNAs, those annotated genes included two hexamerin proteins, astakine neuropeptide, serine proteases, and serine protease inhibitors. We found that for select differentially expressed genes in the brain, changes in gene expression were most likely driven by the changes in physiological state (i.e., age, nutritional status, or dominance rank) or in social environment (released from influence of primer pheromone). This was concluded because virgins that dealated after being separated from mated queens showed similar patterns of gene expression in the brain as those of mated queens for hexamerin 1, astakine, and XR_850909. Abaecin (XR_850725), however, appears upregulated only after mating. Therefore, our findings contribute to distinguish how specific gene networks, especially those influenced by queen primer pheromone, are regulated in queen ants. Additionally, to identify brain signaling pathways, we mined the fire ant genome and compiled a list of G-protein-coupled receptors (GPCRs). The expression level of GPCRs and other genes in the "genetic toolkit" in the brains of virgin alates and mated dealate queens is reported.


The reproductive biology of Ellochelon vaigiensis from the Vietnamese Mekong Delta.

  • Quang Minh Dinh‎ et al.
  • Ecology and evolution‎
  • 2024‎

The Squaretail mullet, Ellochelon vaigiensis, is a commercial fish species distributed throughout the Indo-Pacific region. This species tolerates wide variations in salinity, having been reported from both freshwater and marine habitats. Although economically significant, there is little information on its reproduction, especially in the Vietnamese Mekong Delta (VMD), where it is heavily extracted. Our study elucidates the breeding pattern, seasonality, first length at maturity, as well as potential and relative fecundity of this species. Fish specimens were collected by trawl nets from November 2020 to October 2021 at four estuarine sites within the VMD. We found this species to be a synchronous spawner, with peaks in reproductive activity from June to September. In the populations we surveyed, there was significant dominance of males (1.26:1.00) based on 942 fish samples (526 males and 416 females). The length at 50% maturity for females was significantly higher than for males at all sites and ranged from 10.6 to 19.3 cm. The diameter of the eggs examined for this species exhibited slight variation, from 0.43 to 0.54 mm. The potential fecundity ranged from 246,254 ± 35,878 to 411,970 ± 54,370 eggs, corresponding to female length and weight of 26.7-32.6 cm and 102.97-234.19 g, respectively. Relative fecundity values were highest at Thanh Phu, Ben Tre (6388 ± 605 eggs), and Dong Hai, Bac Lieu (6461 ± 637 eggs), followed by Tran De, Soc Trang (4729 ± 408), and were found to be lowest at Duyen Hai, Tra Vinh (3117 ± 223 eggs). Information on reproductive behavior in this species has far-reaching impacts on sustainable extractions, stock conservation, and aquaculture.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: