Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome.

  • Francesco Vetrini‎ et al.
  • Genome medicine‎
  • 2019‎

Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity).


Phenotypic and molecular convergence of 2q23.1 deletion syndrome with other neurodevelopmental syndromes associated with autism spectrum disorder.

  • Sureni V Mullegama‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention.


Dietary regimens modify early onset of obesity in mice haploinsufficient for Rai1.

  • Joseph T Alaimo‎ et al.
  • PloS one‎
  • 2014‎

Smith-Magenis syndrome is a complex genomic disorder in which a majority of individuals are obese by adolescence. While an interstitial deletion of chromosome 17p11.2 is the leading cause, mutation or deletion of the RAI1 gene alone results in most features of the disorder. Previous studies have shown that heterozygous knockout of Rai1 results in an obese phenotype in mice and that Smith-Magenis syndrome mouse models have a significantly reduced fecundity and an altered transmission pattern of the mutant Rai1 allele, complicating large, extended studies in these models. In this study, we show that breeding C57Bl/6J Rai1+/- mice with FVB/NJ to create F1 Rai1+/- offspring in a mixed genetic background ameliorates both fecundity and Rai1 allele transmission phenotypes. These findings suggest that the mixed background provides a more robust platform for breeding and larger phenotypic studies. We also characterized the effect of dietary intake on Rai1+/- mouse growth during adolescent and early adulthood developmental stages. Animals fed a high carbohydrate or a high fat diet gained weight at a significantly faster rate than their wild type littermates. Both high fat and high carbohydrate fed Rai1+/- mice also had an increase in body fat and altered fat distribution patterns. Interestingly, Rai1+/- mice fed different diets did not display altered fasting blood glucose levels. These results suggest that dietary regimens are extremely important for individuals with Smith-Magenis syndrome and that food high in fat and carbohydrates may exacerbate obesity outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: