2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Impairment in Respiratory Function Contributes to Olfactory Impairment in Amyotrophic Lateral Sclerosis.

  • René Günther‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Nonmotor symptoms are very common in neurodegenerative diseases. In patients suffering from amyotrophic lateral sclerosis (ALS), olfactory dysfunction was first reported more than 20 years ago; however, its pathophysiological correlates and further implications remain elusive.


The Human Brain Representation of Odor Identification in Amnestic Mild Cognitive Impairment and Alzheimer's Dementia of Mild Degree.

  • Grete Kjelvik‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Background: Odor identification (OI) ability is a suggested early biomarker of Alzheimer's disease. In this study, we investigated brain activity within the brain's olfactory network associated with OI in patients with amnestic mild cognitive impairment (aMCI) and mild Alzheimer's dementia (mAD) to uncover the neuronal basis of this impairment. Materials and Methods: Patients with aMCI (n = 11) or mAD (n = 6) and 28 healthy older adults underwent OI functional MRI (fMRI) at 3T, OI, odor discrimination, and cognitive tests and apolipoprotein-e4 (APOE4) genotyping. Eleven patients had cerebrospinal fluid (CSF) analyzed. Those with aMCI were followed for 2 years to examine conversion to dementia. Results: The aMCI/mAD group performed significantly worse on all OI tests and the odor discrimination test compared to controls. The aMCI/mAD group had reduced activation in the right anterior piriform cortex compared to the controls during OI fMRI [Gaussian random field (GRF) corrected cluster threshold, p < 0.05]. This group difference remained after correcting for age, sex education, and brain parenchymal fraction. This difference in piriform activity was driven primarily by differences in odor discrimination ability and to a lesser extent by OI ability. There was no group by odor discrimination/identification score interaction on brain activity. Across both groups, only odor discrimination score was significantly associated with brain activity located to the right piriform cortex. Brain activity during OI was not associated with Mini Mental Status Examination scores. At the group level, the aMCI/mAD group activated only the anterior insula, while the control group had significant activation within all regions of the olfactory network during OI fMRI. There was no association between brain activity during OI fMRI and total beta-amyloid levels in the CSF in the aMCI/mAD group. Conclusion: The OI impairment in aMCI/mAD patients is associated with significantly reduced activity in the piriform cortex compared to controls. Activation of downstream regions within the olfactory network is also significantly affected in the aMCI/mAD group, except the anterior insula, which is impinged late in the course of Alzheimer's disease. OI tests thus reflect Alzheimer's disease pathology in olfactory brain structures.


The Design Matters: How to Detect Neural Correlates of Baby Body Odors.

  • Laura Schäfer‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Functional magnetic resonance imaging of body odors is challenging due to methodological obstacles of odor presentation in the scanner and low intensity of body odors. Hence, few imaging studies investigated neural responses to body odors. Those differ in design characteristics and have shown varying results. Evidence on central processing of baby body odors has been scarce but might be important in order to detect neural correlates of bonding in mothers. A suitable paradigm for investigating perception of baby body odors has still to be established. We compared neural responses to baby body odors in a new to a conventional block design in a sample of ten normosmic mothers. For the new short design, 6 s of continuous odor presentation were followed by 19 s baseline and 13 repetitions were performed. For the conventional long design, 15 s of pulsed odor presentation were followed by 30 s of baseline and eight repetitions were performed. Neural responses were observed in brain structures related to basal and higher-order olfactory processing, such as insula, orbitofrontal cortex, and amygdala. Neural responses following the short design were significantly higher in comparison to the long design. This effect was based on higher number of repetitions but affected olfactory areas differently. The BOLD signal in the primary olfactory structures was enhanced by short and continuous stimulation, secondary structures did profit from longer stimulations with many repetitions. The short design is recommended as a suitable paradigm in order to detect neuronal correlates of baby body odors.


TaSCA, an Agile Survey on Chemosensory Impairments for Self-Monitoring of COVID-19 Patients: A Pilot Study.

  • Carla Mucignat-Caretta‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Background/Objective: During the COVID-19 pandemic, smell and taste disorders emerged as key non-respiratory symptoms. Due to widespread presence of the disease and to difficult objective testing of positive persons, the use of short surveys became mandatory. Most of the existing resources are focused on smell, very few on taste or trigeminal chemosensation called chemesthesis. However, it is possible that the three submodalities are affected differently by COVID-19. Methods: We prepared a short survey (TaSCA) that can be administered at the telephone or through online resources to explore chemosensation. It is composed of 11 items on olfaction, taste, and chemesthesis, in order to discriminate the three modalities. We avoided abstract terms, and the use of semiquantitative scales because older patients may be less engaged. Statistical handling included descriptive statistics, Pearson's chi-squared test and cluster analysis. Results: The survey was completed by 83 persons (60 females and 23 males), which reported diagnosis of COVID-19 by clinical (n = 7) or molecular (n = 18) means, the others being non-COVID subjects. Cluster analysis depicted the existence of two groups, one containing mostly asymptomatic and one mostly symptomatic subjects. All swab-positive persons fell within this second group. Only one item, related to trigeminal temperature perception, did not discriminate between the two groups. Conclusions: These preliminary results indicate that TaSCA may be used to easily track chemosensory symptoms related to COVID-19 in an agile way, giving a picture of three different chemosensory modalities.


Traumatic brain injury and olfaction: a systematic review.

  • Peter William Schofield‎ et al.
  • Frontiers in neurology‎
  • 2014‎

Traumatic brain injury (TBI) is a common condition that is often complicated by neuropsychiatric sequelae that can have major impacts on function and quality of life. An alteration in the sense of smell is recognized as a relatively common complication of TBI; however in clinical practice, this complication may not be sought or adequately characterized. We conducted a systematic review of studies concerned with olfactory functioning following TBI. Our predetermined criteria led to the identification of 25 studies published in English, which we examined in detail. We have tabulated the data from these studies in eight separate tables, beginning with Table 1, which highlights each study's key findings, and we provide a summary/synthesis of the findings in the accompanying results and discussion sections. Despite widely differing methodologies, the studies attest to a high frequency of post-TBI olfactory dysfunction and indicate that its presence can serve as a potential marker of additional structural or functional morbidities.


LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol: Deep Phenotyping of an International Genetic Cohort.

  • Tatiana Usnich‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Background: Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2-linked PD is clinically indistinguishable from idiopathic PD and inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity that differ across ethnicities and geographic regions. Objective: To systematically assess clinical signs and symptoms including non-motor features, comorbidities, medication and environmental factors in PD patients, unaffected LRRK2 pathogenic variant carriers, and controls. A further focus is to enable the investigation of modifiers of penetrance and expressivity of LRRK2 pathogenic variants using genetic and environmental data. Methods: Eligible participants are invited for a personal or online examination which comprises completion of a detailed eCRF and collection of blood samples (to obtain DNA, RNA, serum/plasma, immune cells), urine as well as household dust. We plan to enroll 1,000 participants internationally: 300 with LRRK2-linked PD, 200 with LRRK2 pathogenic variants but without PD, 100 PD patients with pathogenic variants in the GBA or PRKN genes, 200 patients with idiopathic PD, and 200 healthy persons without pathogenic variants. Results: The eCRF consists of an investigator-rated (1 h) and a self-rated (1.5 h) part. The first part includes the Movement Disorder Society Unified Parkinson's Disease Rating, Hoehn &Yahr, and Schwab & England Scales, the Brief Smell Identification Test, and Montreal Cognitive Assessment. The self-rating part consists of a PD risk factor, food frequency, autonomic dysfunction, and quality of life questionnaires, the Pittsburgh Sleep Quality Inventory, and the Epworth Sleepiness as well as the Hospital Anxiety and Depression Scales. The first 15 centers have been initiated and the first 150 participants enrolled (as of March 25th, 2021). Conclusions: LIPAD is a large-scale international scientific effort focusing on deep phenotyping of LRRK2-linked PD and healthy pathogenic variant carriers, including the comparison with additional relatively frequent genetic forms of PD, with a future perspective to identify genetic and environmental modifiers of penetrance and expressivity Clinical Trial Registration:ClinicalTrials.gov, NCT04214509.


Neurological and Musculoskeletal Features of COVID-19: A Systematic Review and Meta-Analysis.

  • Auwal Abdullahi‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Importance: Some of the symptoms of COVID-19 are fever, cough, and breathing difficulty. However, the mechanism of the disease, including some of the symptoms such as the neurological and musculoskeletal symptoms, is still poorly understood. Objective: The aim of this review is to summarize the evidence on the neurological and musculoskeletal symptoms of the disease. This may help with early diagnosis, prevention of disease spread, and treatment planning. Data Sources: MEDLINE, EMBASE, Web of Science, and Google Scholar (first 100 hits) were searched until April 17, 2020. The key search terms used were "coronavirus" and "signs and symptoms." Only studies written in English were included. Study Selection: The selection was performed by two independent reviewers using EndNote and Rayyan software. Any disagreement was resolved by consensus or by a third reviewer. Data Extraction and Synthesis: PRISMA guidelines were followed for abstracting data and assessing the quality of the studies. These were carried out by two and three independent reviewers, respectively. Any disagreement was resolved by consensus or by a third reviewer. The data were analyzed using qualitative synthesis and pooled using a random-effect model. Main Outcome(s) and Measure(s): The outcomes in the study include country, study design, participant details (sex, age, sample size), and neurological and musculoskeletal features. Result: Sixty studies (n = 11, 069) were included in the review, and 51 studies were used in the meta-analysis. The median or mean age ranged from 24 to 95 years. The prevalence of neurological and musculoskeletal manifestations was 35% for smell impairment (95% CI 0-94%; I 2 99.63%), 33% for taste impairment (95% CI 0-91%; I 2 99.58%), 19% for myalgia (95% CI 16-23; I 2 95%), 12% for headache (95% CI 9-15; I 2 93.12%), 10% for back pain (95% CI 1-23%; I 2 80.20%), 10% for dizziness (95% CI 3-19%; I 2 86.74%), 3% for acute cerebrovascular disease (95% CI 1-5%; I 2 0%), and 2% for impaired consciousness (95% CI 1-2%; I 2 0%). Conclusion and Relevance: Patients with COVID-19 present with neurological and musculoskeletal symptoms. Therefore, clinicians need to be vigilant in the diagnosis and treatment of these patients.


Slowed Prosaccades and Increased Antisaccade Errors As a Potential Behavioral Biomarker of Multiple System Atrophy.

  • Sarah H Brooks‎ et al.
  • Frontiers in neurology‎
  • 2017‎

Current clinical diagnostic tools are limited in their ability to accurately differentiate idiopathic Parkinson's disease (PD) from multiple system atrophy (MSA) and other parkinsonian disorders early in the disease course, but eye movements may stand as objective and sensitive markers of disease differentiation and progression. To assess the use of eye movement performance for uniquely characterizing PD and MSA, subjects diagnosed with PD (N = 21), MSA (N = 11), and age-matched controls (C, N = 20) were tested on the prosaccade and antisaccade tasks using an infrared eye tracker. Twenty of these subjects were retested ~7 months later. Saccade latencies, error rates, and longitudinal changes in saccade latencies were measured. Both PD and MSA patients had greater antisaccade error rates than C subjects, but MSA patients exhibited longer prosaccade latencies than both PD and C patients. With repeated testing, antisaccade latencies improved over time, with benefits in C and PD but not MSA patients. In the prosaccade task, the normal latencies of the PD group show that basic sensorimotor oculomotor function remain intact in mid-stage PD, whereas the impaired latencies of the MSA group suggest additional degeneration earlier in the disease course. Changes in antisaccade latency appeared most sensitive to differences between MSA and PD across short time intervals. Therefore, in these mid-stage patients, increased antisaccade errors combined with slowed prosaccade latencies might serve as a useful marker for early differentiation between PD and MSA, and, antisaccade performance, a measure of MSA progression. Together, our findings suggest that eye movements are promising biomarkers for early differentiation and progression of parkinsonian disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: