Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Robust EEG-Based Decoding of Auditory Attention With High-RMS-Level Speech Segments in Noisy Conditions.

  • Lei Wang‎ et al.
  • Frontiers in human neuroscience‎
  • 2020‎

The attended speech stream can be detected robustly, even in adverse auditory scenarios with auditory attentional modulation, and can be decoded using electroencephalographic (EEG) data. Speech segmentation based on the relative root-mean-square (RMS) intensity can be used to estimate segmental contributions to perception in noisy conditions. High-RMS-level segments contain crucial information for speech perception. Hence, this study aimed to investigate the effect of high-RMS-level speech segments on auditory attention decoding performance under various signal-to-noise ratio (SNR) conditions. Scalp EEG signals were recorded when subjects listened to the attended speech stream in the mixed speech narrated concurrently by two Mandarin speakers. The temporal response function was used to identify the attended speech from EEG responses of tracking to the temporal envelopes of intact speech and high-RMS-level speech segments alone, respectively. Auditory decoding performance was then analyzed under various SNR conditions by comparing EEG correlations to the attended and ignored speech streams. The accuracy of auditory attention decoding based on the temporal envelope with high-RMS-level speech segments was not inferior to that based on the temporal envelope of intact speech. Cortical activity correlated more strongly with attended than with ignored speech under different SNR conditions. These results suggest that EEG recordings corresponding to high-RMS-level speech segments carry crucial information for the identification and tracking of attended speech in the presence of background noise. This study also showed that with the modulation of auditory attention, attended speech can be decoded more robustly from neural activity than from behavioral measures under a wide range of SNR.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: