Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Roles of constitutive and signal-dependent protein phosphatase 2A docking motifs in burst attenuation of the cyclic AMP response element-binding protein.

  • Sang Hwa Kim‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The cAMP response element-binding protein (CREB) is an important regulator of cell growth, metabolism, and synaptic plasticity. CREB is activated through phosphorylation of an evolutionarily conserved Ser residue (S133) within its intrinsically disordered kinase-inducible domain (KID). Phosphorylation of S133 in response to cAMP, Ca2+, and other stimuli triggers an association of the KID with the KID-interacting (KIX) domain of the CREB-binding protein (CBP), a histone acetyl transferase (HAT) that promotes transcriptional activation. Here we addressed the mechanisms of CREB attenuation following bursts in CREB phosphorylation. We show that phosphorylation of S133 is reversed by protein phosphatase 2A (PP2A), which is recruited to CREB through its B56 regulatory subunits. We found that a B56-binding site located at the carboxyl-terminal boundary of the KID (BS2) mediates high-affinity B56 binding, while a second binding site (BS1) located near the amino terminus of the KID mediates low affinity binding enhanced by phosphorylation of adjacent casein kinase (CK) phosphosites. Mutations that diminished B56 binding to BS2 elevated both basal and stimulus-induced phosphorylation of S133, increased CBP interaction with CREB, and potentiated the expression of CREB-dependent reporter genes. Cells from mice harboring a homozygous CrebE153D mutation that disrupts BS2 exhibited increased S133 phosphorylation stoichiometry and elevated transcriptional bursts to cAMP. These findings provide insights into substrate targeting by PP2A holoenzymes and establish a new mechanism of CREB attenuation that has implications for understanding CREB signaling in cell growth, metabolism, synaptic plasticity, and other physiologic contexts.


Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine.

  • Noriyuki Okudaira‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Long interspersed element 1 (L1) is a retroelement constituting ∼17% of the human genome. A single human cell has 80-100 copies of L1 capable of retrotransposition (L1-RTP), ∼10% of which are "hot L1" copies, meaning they are primed for "jumping" within the genome. Recent studies demonstrated induction of L1 activity by drugs of abuse or low molecular weight compounds, but little is known about the underlying mechanism. The aim of this study was to identify the mechanism and effects of methamphetamine (METH) and cocaine on L1-RTP. Our results revealed that METH and cocaine induced L1-RTP in neuronal cell lines. This effect was found to be reverse transcriptase-dependent. However, METH and cocaine did not induce double-strand breaks. RNA interference experiments combined with add-back of siRNA-resistant cDNAs revealed that the induction of L1-RTP by METH or cocaine depends on the activation of cAMP response element-binding protein (CREB). METH or cocaine recruited the L1-encoded open reading frame 1 (ORF1) to chromatin in a CREB-dependent manner. These data suggest that the cellular cascades underlying METH- and cocaine-induced L1-RTP are different from those behind L1-RTP triggered by DNA damage; CREB is involved in drug-induced L1-RTP. L1-RTP caused by drugs of abuse is a novel type of genomic instability, and analysis of this phenomenon might be a novel approach to studying substance-use disorders.


An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency.

  • Kristian B Laursen‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.


Restoration of the ER stress response protein TDAG51 in hepatocytes mitigates NAFLD in mice.

  • Tamana R Yousof‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.


HBXIP is a novel regulator of the unfolded protein response that sustains tamoxifen resistance in ER+ breast cancer.

  • Shenghong Zhang‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Endocrine-therapy-resistant estrogen receptor-positive (ER+) breast cancer cells often exhibit an augmented capacity to maintain endoplasmic reticulum (EnR) homeostasis under adverse conditions. Oncoprotein hepatitis B X-interacting protein (HBXIP) is a known transcriptional coactivator that promotes cancer development. However, it is unclear whether HBXIP participates in maintaining EnR homeostasis and promoting drug resistance in ER+ breast cancer. Here, we report that tamoxifen-resistant (TmaR) breast cancer cells exhibit increased expression of HBXIP, which acts as an inactivator of the unfolded protein response (UPR) to diminish tamoxifen-induced EnR stress. We show that HBXIP deficiency promotes EnR-associated degradation, enhances UPR-element reporter activity and cellular oxidative stress, and ultimately attenuates the growth of TmaR cells in vitro and in vivo. Mechanistically, we demonstrate that HBXIP acts as a chaperone of UPR transducer inositol-requiring enzyme 1a and diminishes production of reactive oxygen species (ROS) in TamR breast cancer cells. Upon loss of HBXIP expression, tamoxifen treatment hyperactivates IRE1α and its downstream proapoptotic pathways and simultaneously induces accumulation of intracellular ROS. This elevated ROS programmatically activates the other two branches of the UPR, mediated by PKR-like ER kinase and activating transcription factor 6α. Clinical investigations and Kaplan-Meier plotter analysis revealed that HBXIP is highly expressed in TamR breast cancer tissues. Furthermore, reinforced HBXIP expression is associated with a high recurrence and poor relapse-free survival rates in tamoxifen monotherapy ER+ breast cancer patients. These findings indicate that HBXIP is a regulator of EnR homeostasis and a potential target for TamR breast cancer therapy.


Pulsatile and sustained gonadotropin-releasing hormone (GnRH) receptor signaling: does the Ca2+/NFAT signaling pathway decode GnRH pulse frequency?

  • Stephen P Armstrong‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

Gonadotropin-releasing hormone (GnRH) acts via 7 transmembrane region receptors on gonadotrophs to stimulate synthesis and secretion of the luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used (nuclear factor of activated T-cells 2 (NFAT2)-emerald fluorescent protein) to monitor GnRH signaling. Increasing [Ca(2+)](i) causes calmodulin/calcineurin-dependent nuclear NFAT translocation, a response involving proteins (calmodulins and NFATs) that decode frequency in other systems. Using live cell imaging, pulsatile GnRH caused dose- and frequency-dependent increases in nuclear NFAT2-emerald fluorescent protein, and at low frequency, translocation simply tracked GnRH exposure (albeit with slower kinetics). At high frequency (30-min intervals), failure to return to basal conditions before repeat stimulation caused integrative tracking, illustrating how the relative dynamics of up- and downstream signals can increase efficiency of GnRH action. Mathematical modeling predicted desensitization of GnRH effects on [Ca(2+)](i) and that desensitization would increase with dose, frequency, and receptor number, but no such desensitization was seen in HeLa and/or LbetaT2 cells possibly because pulsatile GnRH did not reduce receptor expression (measured by immunofluorescence). GnRH also caused dose- and frequency-dependent activation of alphaGSU, luteinizing hormone beta, and follicle-stimulating hormone beta luciferase reporters, effects that were blocked by calcineurin inhibition. Pulsatile GnRH also activated an NFAT-responsive luciferase reporter, but this response was directly related to cumulative pulse duration. This together with the lack of desensitization of translocation responses suggests that NFAT may mediate GnRH action but is not a genuine decoder of GnRH pulse frequency.


Activation of the Sap-1a transcription factor by the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase.

  • R Janknecht‎ et al.
  • The Journal of biological chemistry‎
  • 1997‎

Ternary complex factors (TCFs) bind to the serum response element in the c-fos promoter and mediate its activation by many extracellular stimuli. Some of these stimuli activate the ERK subclass of mitogen-activated protein kinases (MAPKs) that target the TCF Sap-1a. We show that Sap-1a is also phosphorylated by the stress-activated JNK subclass of MAPKs leading to stimulation of both c-fos serum response element and E74-site-dependent transcription in RK13 cells. Several JNK-1 phosphorylation sites were mapped within Sap-1a, and mutation of these sites affected the transactivation mediated by Sap-1a and JNK-1. The impact of these phosphorylation sites varied at different promoters and was dependent on whether Sap-1a was stimulated by ERK-1 or JNK-1. Additionally, a comparison of Sap-1a with another TCF, Elk-1, revealed that these proteins behaved differently to stimulation by ERK-1 and JNK-1. Furthermore, activation of Sap-1a by JNK-1 was inhibited by the p38(MAPK) in RK13 cells, possibly by competition for a common upstream activator. Altogether, our data suggest that Sap-1a plays an important role in the nuclear response elicited by cellular stress.


Phosphoinositide-binding activity of Smad2 is essential for its function in TGF-β signaling.

  • Pawanthi Buwaneka‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

As a central player in the canonical TGF-β signaling pathway, Smad2 transmits the activation of TGF-β receptors at the plasma membrane (PM) to transcriptional regulation in the nucleus. Although it has been well established that binding of TGF-β to its receptors leads to the recruitment and activation of Smad2, the spatiotemporal mechanism by which Smad2 is recruited to the activated TGF-β receptor complex and activated is not fully understood. Here we show that Smad2 selectively and tightly binds phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the PM. The PI(4,5)P2-binding site is located in the MH2 domain that is involved in interaction with the TGF-β receptor I that transduces TGF-β-receptor binding to downstream signaling proteins. Quantitative optical imaging analyses show that PM recruitment of Smad2 is triggered by its interaction with PI(4,5)P2 that is locally enriched near the activated TGF-β receptor complex, leading to its binding to the TGF-β receptor I. The PI(4,5)P2-binding activity of Smad2 is essential for the TGF-β-stimulated phosphorylation, nuclear transport, and transcriptional activity of Smad2. Structural comparison of all Smad MH2 domains suggests that membrane lipids may also interact with other Smad proteins and regulate their function in diverse TGF-β-mediated biological processes.


Hypoxia-inducible factor-1α and poly [ADP ribose] polymerase 1 cooperatively regulate Notch3 expression under hypoxia via a noncanonical mechanism.

  • Hideaki Nakamura‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Upregulation of Notch3 expression has been reported in many cancers and is considered a marker for poor prognosis. Hypoxia is a driving factor of the Notch3 signaling pathway; however, the induction mechanism and role of hypoxia-inducible factor-1α (HIF-1α) in the Notch3 response are still unclear. In this study, we found that HIF-1α and poly [ADP-ribose] polymerase 1 (PARP-1) regulate Notch3 induction under hypoxia via a noncanonical mechanism. In the analyzed cancer cell lines, Notch3 expression was increased during hypoxia at both the mRNA and protein levels. HIF-1α knockdown and Notch3 promoter reporter analyses indicated that the induction of Notch3 by hypoxia requires HIF-1α and also another molecule that binds the Notch3 promoter's guanine-rich region, which lacks the canonical hypoxia response element. Therefore, using mass spectrometry analysis to identify the binding proteins of the Notch3 promoter, we found that PARP-1 specifically binds to the Notch3 promoter. Interestingly, analyses of the Notch3 promoter reporter and knockdown of PARP-1 revealed that PARP-1 plays an important role in Notch3 regulation. Furthermore, we demonstrate that PARP inhibitors, including an inhibitor specific for PARP-1, attenuated the induction of Notch3 by hypoxia. These results uncover a novel mechanism in which HIF-1α associates with PARP-1 on the Notch3 promoter in a hypoxia response element-independent manner, thereby inducing Notch3 expression during hypoxia. Further studies on this mechanism could facilitate a better understanding of the broader functions of HIF-1α, the roles of Notch3 in cancer formation, and the insights into novel therapeutic strategies.


The store-operated Ca2+ channel Orai1α is required for agonist-evoked NF-κB activation by a mechanism dependent on PKCβ2.

  • Joel Nieto-Felipe‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1β, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1β lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1β, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1β is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCβ activation. Our results indicate that Orai1α interacts with PKCβ2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.


In vivo regulation of steroid hormones by the Chst10 sulfotransferase in mouse.

  • Misa Suzuki-Anekoji‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Chst10 adds sulfate to glucuronic acid to form a carbohydrate antigen, HNK-1, in glycoproteins and glycolipids. To determine the role of Chst10 in vivo, we generated systemic Chst10-deficient mutant mice. Although Chst10(-/-) mice were born and grew to adulthood with no gross defects, they were subfertile. Uteri from Chst10(-/-) females at the pro-estrus stage were larger than those from wild-type females and exhibited a thick uterine endometrium. Serum estrogen levels in Chst10(-/-) females were higher than those from wild-type females, suggesting impaired down-regulation of estrogen. Because steroid hormones are often conjugated to glucuronic acid, we hypothesized that Chst10 sulfates glucuronidated steroid hormone to regulate steroid hormone in vivo. Enzymatic activity assays and structural analysis of Chst10 products by HPLC and mass spectrometry revealed that Chst10 indeed sulfates glucuronidated estrogen, testosterone, and other steroid hormones. We also identified an HPLC peak corresponding to sulfated and glucuronidated estradiol in serum from wild-type but not from Chst10 null female mice. Estrogen-response element reporter assays revealed that Chst10-modified estrogen likely did not bind to its receptor. These results suggest that subfertility exhibited by female mice following Chst10 loss results from dysregulation of estrogen. Given that Chst10 transfers sulfates to several steroid hormones, Chst10 likely functions in widespread regulation of steroid hormones in vivo.


Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases.

  • Ruhcha V Sutavani‎ et al.
  • The Journal of biological chemistry‎
  • 2018‎

Increasing evidence has linked dysregulated interleukin (IL)-10 production by IL-10+ve B cells to autoimmunity, highlighting the importance of improving the understanding of the regulation of IL-10 production in these cells. In both B cells and myeloid cells, IL-10 can be produced in response to Toll-like receptor (TLR) agonists. In macrophages, previous studies have established that mitogen- and stress-activated protein kinases (MSKs) regulate IL-10 production via the phosphorylation of cAMP response element-binding (CREB) protein on the IL-10 promoter. We found here that although MSKs are activated in peritoneal B cells in response to TLR4 agonists, neither MSKs nor CREB are required for IL-10 production in these cells. Using a combination of chemical inhibitors and knockout mice, we found that IL-10 induction in B cells was regulated by an ERK1/2- and p90 ribosomal S6 kinase-dependent mechanism, unlike in macrophages in which p90 ribosomal S6 kinase was not required. This observation highlights fundamental differences in the signaling controlling IL-10 production in B cells and macrophages, even though these two cell types respond to a common TLR stimulus.


RGC-32 Deficiency Protects against Hepatic Steatosis by Reducing Lipogenesis.

  • Xiao-Bing Cui‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Hepatic steatosis is associated with insulin resistance and metabolic syndrome because of increased hepatic triglyceride content. We have reported previously that deficiency of response gene to complement 32 (RGC-32) prevents high-fat diet (HFD)-induced obesity and insulin resistance in mice. This study was conducted to determine the role of RGC-32 in the regulation of hepatic steatosis. We observed that hepatic RGC-32 was induced dramatically by both HFD challenge and ethanol administration. RGC-32 knockout (RGC32(-/-)) mice were resistant to HFD- and ethanol-induced hepatic steatosis. The hepatic triglyceride content of RGC32(-/-) mice was decreased significantly compared with WT controls even under normal chow conditions. Moreover, RGC-32 deficiency decreased the expression of lipogenesis-related genes, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase 1 (SCD1). RGC-32 deficiency also decreased SCD1 activity, as indicated by decreased desaturase indices of the liver and serum. Mechanistically, insulin and ethanol induced RGC-32 expression through the NF-κB signaling pathway, which, in turn, increased SCD1 expression in a SREBP-1c-dependent manner. RGC-32 also promoted SREBP-1c expression through activating liver X receptor. These results demonstrate that RGC-32 contributes to the development of hepatic steatosis by facilitating de novo lipogenesis through activating liver X receptor, leading to the induction of SREBP-1c and its target genes. Therefore, RGC-32 may be a potential novel drug target for the treatment of hepatic steatosis and its related diseases.


Disentangling autoproteolytic cleavage from tethered agonist-dependent activation of the adhesion receptor ADGRL3.

  • Nicole A Perry-Hauser‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Adhesion G protein-coupled receptor latrophilin 3 (ADGRL3), a cell adhesion molecule highly expressed in the central nervous system, acts in synapse formation through trans interactions with its ligands. It is largely unknown if these interactions serve a purely adhesive function or can modulate G protein signaling. To assess how different structural elements of ADGRL3 (e.g., the adhesive domains, autoproteolytic cleavage site, or tethered agonist (TA)) impact receptor function, we require constructs that disrupt specific receptor features without impacting others. While we showed previously that mutating conserved Phe and Met residues in the TA of ADGRL3-C-terminal fragment (CTF), a CTF truncated to the G protein-coupled receptor proteolysis site, abolishes receptor-mediated G protein activation, we now find that autoproteolytic cleavage is disrupted in the full-length version of this construct. To identify a construct that disrupts TA-dependent activity without impacting proteolysis, we explored other mutations in the TA. We found that mutating the sixth and seventh residues of the TA, Leu and Met, to Ala impaired activity in a serum response element activity assay for both full-length and CTF constructs. We confirmed this activity loss results from impaired G protein coupling using an assay that acutely exposes the TA through controlled proteolysis. The ADGRL3 mutant expresses normally at the cell surface, and immunoblotting shows that it undergoes normal autoproteolysis. Thus, we found a construct that disrupts tethered agonism while retaining autoproteolytic cleavage, providing a tool to disentangle these functions in vivo. Our approach and specific findings are likely to be broadly applicable to other adhesion receptors.


The biased M3 mAChR ligand PD 102807 mediates qualitatively distinct signaling to regulate airway smooth muscle phenotype.

  • Eric Tompkins‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Airway smooth muscle (ASM) cells attain a hypercontractile phenotype during obstructive airway diseases. We recently identified a biased M3 muscarinic acetylcholine receptor (mAChR) ligand, PD 102807, that induces GRK-/arrestin-dependent AMP-activated protein kinase (AMPK) activation to inhibit transforming growth factor-β-induced hypercontractile ASM phenotype. Conversely, the balanced mAChR agonist, methacholine (MCh), activates AMPK yet does not regulate ASM phenotype. In the current study, we demonstrate that PD 102807- and MCh-induced AMPK activation both depend on Ca2+/calmodulin-dependent kinase kinases (CaMKKs). However, MCh-induced AMPK activation is calcium-dependent and mediated by CaMKK1 and CaMKK2 isoforms. In contrast, PD 102807-induced signaling is calcium-independent and mediated by the atypical subtype protein kinase C-iota and the CaMKK1 (but not CaMKK2) isoform. Both MCh- and PD 102807-induced AMPK activation involve the AMPK α1 isoform. PD 102807-induced AMPK α1 (but not AMPK α2) isoform activation mediates inhibition of the mammalian target of rapamycin complex 1 (mTORC1) in ASM cells, as demonstrated by increased Raptor (regulatory-associated protein of mTOR) phosphorylation as well as inhibition of phospho-S6 protein and serum response element-luciferase activity. The mTORC1 inhibitor rapamycin and the AMPK activator metformin both mimic the ability of PD 102807 to attenuate transforming growth factor-β-induced α-smooth muscle actin expression (a marker of hypercontractile ASM). These data indicate that PD 102807 transduces a signaling pathway (AMPK-mediated mTORC1 inhibition) qualitatively distinct from canonical M3 mAChR signaling to prevent pathogenic remodeling of ASM, thus demonstrating PD 102807 is a biased M3 mAChR ligand with therapeutic potential for the management of obstructive airway disease.


The ubiquitination status of the glucagon receptor determines signal bias.

  • Suneet Kaur‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

The pancreatic hormone glucagon activates the glucagon receptor (GCGR), a class B seven-transmembrane G protein-coupled receptor that couples to the stimulatory heterotrimeric G protein and provokes PKA-dependent signaling cascades vital to hepatic glucose metabolism and islet insulin secretion. Glucagon-stimulation also initiates recruitment of the endocytic adaptors, βarrestin1 and βarrestin2, which regulate desensitization and internalization of the GCGR. Unlike many other G protein-coupled receptors, the GCGR expressed at the plasma membrane is constitutively ubiquitinated and upon agonist-activation, internalized GCGRs are deubiquitinated at early endosomes and recycled via Rab4-containing vesicles. Herein we report a novel link between the ubiquitination status and signal transduction mechanism of the GCGR. In the deubiquitinated state, coupling of the GCGR to Gs is diminished, while binding to βarrestin is enhanced with signaling biased to a βarrestin1-dependent p38 mitogen activated protein kinase (MAPK) pathway. This ubiquitin-dependent signaling bias arises through the modification of lysine333 (K333) on the cytoplasmic face of transmembrane helix V. Compared with the GCGR-WT, the mutant GCGR-K333R has impaired ubiquitination, diminished G protein coupling, and PKA signaling but unimpaired potentiation of glucose-stimulated-insulin secretion in response to agonist-stimulation, which involves p38 MAPK signaling. Both WT and GCGR-K333R promote the formation of glucagon-induced βarrestin1-dependent p38 signaling scaffold that requires canonical upstream MAPK-Kinase3, but is independent of Gs, Gi, and βarrestin2. Thus, ubiquitination/deubiquitination at K333 in the GCGR defines the activation of distinct transducers with the potential to influence various facets of glucagon signaling in health and disease.


Expression of the primate-specific LINC00473 RNA in mouse neurons promotes excitability and CREB-regulated transcription.

  • Priit Pruunsild‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element-binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.


Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)-mediated induction of the long noncoding RNA NICI.

  • Victoria Lauer‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Hypoxia-inducible transcription factors (HIFs) directly dictate the expression of multiple RNA species including novel and as yet uncharacterized long noncoding transcripts with unknown function. We used pan-genomic HIF-binding and transcriptomic data to identify a novel long noncoding RNA Noncoding Intergenic Co-Induced transcript (NICI) on chromosome 12p13.31 which is regulated by hypoxia via HIF-1 promoter-binding in multiple cell types. CRISPR/Cas9-mediated deletion of the hypoxia-response element revealed co-regulation of NICI and the neighboring protein-coding gene, solute carrier family 2 member 3 (SLC2A3) which encodes the high-affinity glucose transporter 3 (GLUT3). Knockdown or knockout of NICI attenuated hypoxic induction of SLC2A3, indicating a direct regulatory role of NICI in SLC2A3 expression, which was further evidenced by CRISPR/Cas9-VPR-mediated activation of NICI expression. We also demonstrate that regulation of SLC2A3 is mediated through transcriptional activation rather than posttranscriptional mechanisms because knockout of NICI leads to reduced recruitment of RNA polymerase 2 to the SLC2A3 promoter. Consistent with this we observe NICI-dependent regulation of glucose consumption and cell proliferation. Furthermore, NICI expression is regulated by the von Hippel-Lindau (VHL) tumor suppressor and is highly expressed in clear cell renal cell carcinoma (ccRCC), where SLC2A3 expression is associated with patient prognosis, implying an important role for the HIF/NICI/SLC2A3 axis in this malignancy.


The renal cancer risk allele at 14q24.2 activates a novel hypoxia-inducible transcription factor-binding enhancer of DPF3 expression.

  • Johanna Protze‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Evolution of clear cell renal cell carcinoma is guided by dysregulation of hypoxia-inducible transcription factor (HIF) pathways following loss of the von Hippel-Lindau tumor suppressor protein. Renal cell carcinoma (RCC)-associated polymorphisms influence HIF-DNA interactions at enhancers of important oncogenes thereby modulating the risk of developing renal cancer. A strong signal of genome-wide association with RCC was determined for the single nucleotide polymorphism (SNP) rs4903064, located on chr14q.24.2 within an intron of DPF3, encoding for Double PHD Fingers 3, a member of chromatin remodeling complexes; however, it is unclear how the risk allele operates in renal cells. In this study, we used tissue specimens and primary renal cells from a large cohort of RCC patients to examine the function of this polymorphism. In clear cell renal cell carcinoma tissue, isolated tumor cells as well as in primary renal tubular cells, in which HIF was stabilized, we determined genotype-specific increases of DPF3 mRNA levels and identified that the risk SNP resides in an active enhancer region, creating a novel HIF-binding motif. We then confirmed allele-specific HIF binding to this locus using chromatin immunoprecipitation of HIF subunits. Consequentially, HIF-mediated DPF3 regulation was dependent on the presence of the risk allele. Finally, we show that DPF3 deletion in proximal tubular cells retarded cell growth, indicating potential roles for DPF3 in cell proliferation. Our analyses suggest that the HIF pathway differentially operates on a SNP-induced hypoxia-response element at 14q24.2, thereby affecting DPF3 expression, which increases the risk of developing renal cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: