Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 13,226 papers

Interaction among clays and bovine serum albumin.

  • Martin Mucha‎ et al.
  • RSC advances‎
  • 2020‎

Interactions between bovine serum albumin and various clays including pure clay minerals and bentonite were studied with the aim to describe the interaction process. The adsorption of albumin on the clays is strongly affected by the behavior of clays in the aquatic environment (hydrolysis and release of cations). A sufficient amount of albumin was adsorbed on the acid-activated montmorillonite K10 (0.067 mg mg-1) and on the illite-smectite (0.086 mg mg-1). These clay minerals do not strongly affect the sorption solution parameters such as pH value and content of cations. Practically no adsorption was observed on the bentonite and vermiculite. Bentonite and vermiculite are subject to stronger interactions with water which cause the increase of pH value of the sorption solution and release of cations to the solution and thus they cause conformational changes of albumin, which was confirmed by circular dichroism measurements. Obtained results were confirmed by infrared spectroscopy and thermal analysis as well. Interaction of studied materials with bovine serum albumin causes the reduction of particle size in the case of all studied clays except vermiculite. Albumin probably attacks the clay structure during the adsorption, which causes the decrease of particle size. The presented work contributes to the knowledge about interaction of bovine serum albumin with clays in the field of influence of physico-chemical behaviour of clays in the solution on the interaction with albumin.


Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions.

  • Javier Pérez-Piñeiro‎ et al.
  • Journal of xenobiotics‎
  • 2023‎

In this work, a stability study of dispersions of graphene oxide and graphene oxide functionalized with polyethylene glycol (PEG) in the presence of bovine serum albumin is carried out. First, a structural characterization of these nanomaterials is performed by scanning electron microscopy, atomic force microscopy, and ultraviolet visible spectroscopy, comparing the starting nanomaterials with the nanomaterials in contact with the biological material, i.e., bovine fetal serum. The different experiments were performed at different concentrations of nanomaterial (0.125-0.5 mg/mL) and BSA (0.01-0.04 mg/mL), at different incubation times (5-360 min), with and without PEG, and at different temperatures (25-40 °C). The SEM results show that BSA is adsorbed on the surface of the graphene oxide nanomaterial. Using UV-Vis spectrophotometry, the characteristic absorption peaks of BSA are observed at 210 and 280 nm, corroborating that the protein has been adsorbed. When the time increases, the BSA protein can be detached from the nanomaterial due to a desorption process. The stability of the dispersions is reached at a pH between 7 and 9. The dispersions behave like a Newtonian fluid with viscosity values between 1.1 and 1.5 mPa·s at a temperature range of 25 to 40 °C. The viscosity values decrease as the temperature increases.


1H- and 2H-NMR study of bovine serum albumin solutions.

  • J Gallier‎ et al.
  • Biochimica et biophysica acta‎
  • 1987‎

Frozen, native and denatured bovine serum albumin solutions have been studied with a wide-band NMR pulse spectrometer. Both macromolecular and water protons spin-spin and spin-lattice relaxation times--t2m, t1m, t2w, t1w--have been measured between 170 and 360 K. In the native sample, the t2m process is the tumbling rate of the bovine serum albumin molecules. It gives to the spin-lattice relaxation an omega 0(-2) frequency dependence at room temperature in the studied frequency range, 6-90 MHz. An additional process contributes to t1m-1; it arises from internal backbone or segmental motions and provides a lower frequency behaviour. On denaturation, bovine serum albumin molecules lose their tumbling motion and form a rigid network, while internal backbone motions seem unaffected. Calorimetric Cp measurement confirms the occurrence of a phase transition upon denaturation. 1H and 2H spin-lattice relaxation times of water protons depend mainly on bound water mobility. 1H and 2H t2w depend also on the tertiary structure of bovine serum albumin and on its mobility, because of a fast exchange process between water and some protein protons (or deutons), while a cross-relaxation process between protein and water protons contributes to 1H t1w. Denaturation has no influence on bound water motional properties and bound water population.


Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid.

  • E S Bronze-Uhle‎ et al.
  • Nanotechnology, science and applications‎
  • 2017‎

Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of chemical morphology characterization and in vitro release studies indicated the potential use of these NPs as drug carriers in biological systems requiring a fast release of SA.


Impact of Sinapic Acid on Bovine Serum Albumin Thermal Stability.

  • Aurica Precupas‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

The thermal stability of bovine serum albumin (BSA) in Tris buffer, as well as the effect of sinapic acid (SA) on protein conformation were investigated via calorimetric (differential scanning microcalorimetry-μDSC), spectroscopic (dynamic light scattering-DLS; circular dichroism-CD), and molecular docking approaches. μDSC data revealed both the denaturation (endotherm) and aggregation (exotherm) of the protein, demonstrating the dual effect of SA on protein thermal stability. With an increase in ligand concentration, (i) protein denaturation shifts to a higher temperature (indicating native form stabilization), while (ii) the aggregation process shifts to a lower temperature (indicating enhanced reactivity of the denatured form). The stabilization effect of SA on the native structure of the protein was supported by CD results. High temperature (338 K) incubation induced protein unfolding and aggregation, and increasing the concentration of SA altered the size distribution of the protein population, as DLS measurements demonstrated. Complementary information offered by molecular docking allowed for the assessment of the ligand binding within the Sudlow's site I of the protein. The deeper insight into the SA-BSA interaction offered by the present study may serve in the clarification of ligand pharmacokinetics and pharmacodynamics, thus opening paths for future research and therapeutic applications.


Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin.

  • Vera A Borzova‎ et al.
  • PloS one‎
  • 2016‎

Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates.


Formation and Stabilization of Gold Nanoparticles in Bovine Serum Albumin Solution.

  • Iulia Matei‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The formation and growth of gold nanoparticles (AuNPs) were investigated in pH 7 buffer solution of bovine serum albumin (BSA) at room temperature. The processes were monitored by UV-Vis, circular dichroism, Raman and electron paramagnetic resonance (EPR) spectroscopies. TEM microscopy and dynamic light scattering (DLS) measurements were used to evidence changes in particle size during nanoparticle formation and growth. The formation of AuNPs at pH 7 in the absence of BSA was not observed, which proves that the albumin is involved in the first step of Au(III) reduction. Changes in the EPR spectral features of two spin probes, CAT16 and DIS3, with affinity for BSA and AuNPs, respectively, allowed us to monitor the particle growth and to demonstrate the protective role of BSA for AuNPs. The size of AuNPs formed in BSA solution increases slowly with time, resulting in nanoparticles of different morphologies, as revealed by TEM. Raman spectra of BSA indicate the interaction of albumin with AuNPs through sulfur-containing amino acid residues. This study shows that albumins act as both reducing agents and protective corona of AuNPs.


Ketoprofen-Based Ionic Liquids: Synthesis and Interactions with Bovine Serum Albumin.

  • Paula Ossowicz‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The development of ionic liquids based on active pharmaceutical ingredients (API-ILs) is a possible solution to some of the problems of solid and/or hydrophobic drugs such as low solubility and bioavailability, polymorphism and an alternative route of administration could be suggested as compared to the classical drug. Here, we report for the first time the synthesis and detailed characterization of a series of ILs containing a cation amino acid esters and anion ketoprofen (KETO-ILs). The affinity and the binding mode of the KETO-ILs to bovine serum albumin (BSA) were assessed using fluorescence spectroscopy. All compounds bind in a distance not longer than 6.14 nm to the BSA fluorophores. The estimated binding constants (KA) are in order of 105 L mol-1, which is indicative of strong drug or IL-BSA interactions. With respect to the ketoprofen-BSA system, a stronger affinity of the ILs containing l-LeuOEt, l-ValOBu, and l-ValOEt cation towards BSA is clearly seen. Fourier transformed infrared spectroscopy experiments have shown that all studied compounds induced a rearrangement of the protein molecule upon binding, which is consistent with the suggested static mechanism of BSA fluorescence quenching and formation of complexes between BSA and the drugs. All tested compounds were safe for macrophages.


The Morphology Dependent Interaction between Silver Nanoparticles and Bovine Serum Albumin.

  • Jingyi Zhang‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2023‎

Biological applications of silver nanoparticles (AgNPs) depend on the covalently attached or adsorbed proteins. A series of biological effects of AgNPs within cells are determined by the size, shape, aspect ratio, surface charge, and modifiers. Herein, the morphology dependent interaction between AgNPs and protein was investigated. AgNPs with three different morphologies, such as silver nanospheres, silver nanorods, and silver nanotriangles, were employed to investigate the morphological effect on the interaction with a model protein: bovine serum albumin (BSA). The adsorptive interactions between BSA and the AgNPs were probed by UV-Vis spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), and circular dichroism (CD) techniques. The results revealed that the particle size, shape, and dispersion of the three types of AgNPs markedly influence the interaction with BSA. Silver nanospheres and nanorods were capsulated by protein coronas, which led to slightly enlarged outer size. The silver nanotriangles evolved gradually into nanodisks in the presence of BSA. Fluorescence spectroscopy confirmed the static quenching the fluorescence emission of BSA by the three AgNPs. The FTIR and CD results suggested that the AgNPs with different morphologies had different effects on the secondary structure of BSA. The silver nanospheres and silver nanorods induced more pronounced structural changes than silver nanotriangles. These results suggest that the formation of a protein corona and the aggregation behaviors of AgNPs are markedly determined by their inherent morphologies.


Biophysical interaction between self-assembled branched DNA nanostructures with bovine serum albumin and bovine liver catalase.

  • Bineeth Baral‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Branched DNA (bDNA) nanostructures have emerged as self-assembled biomaterials and are being considered for biomedical applications. Herein, we report the biophysical interaction between self-assembled bDNA nanostructure with circulating protein bovine serum albumin (BSA) and cellular enzyme bovine liver catalase (BLC). The binding between bDNA and BSA or BLC was confirmed through the decrease in fluorescence spectra. The Stern-Volmer data supports for non-covalent bonding with ~1 binding site in case of BSA and BLC thus advocating a static binding. Furthermore, FTIR and ITC study confirmed the binding of bDNAs with proteins through hydrogen bonding and van der Waals interaction. The negative free energy observed in ITC represent spontaneous reaction for BLC-bDNA interaction. The biophysical interaction between bDNA nanostructures and proteins was also supported by DLS and zeta potential measurement. With an increase in bDNA concentrations up to 100 nM, no significant change in absorbance and CD spectra was observed for both BLC and BSA which suggests structural stability and unaffected secondary conformation of proteins in presence of bDNA. Furthermore, the catalytic activity of BLC was unaltered in presence of bDNAscr even with increasing the incubation period from 1 h to 24 h. Interestingly, the time-dependent decrease in activity of BLC was protected by bDNAmix. The thermal melting study suggests a higher Tm value for proteins in presence of bDNAmix which demonstrates that interaction with bDNAmix increases the thermal stability of proteins. Collectively these data suggest that self-assembled DNA nanostructure may bind to BSA for facilitating circulation in plasma or binding to intracellular proteins like BLC for stabilization, however the secondary conformation of protein or catalytic activity of enzyme is unaltered in presence of bDNA nanostructure. Thus, the newly established genomic sequence-driven self-assembled DNA nanostructure can be explored for in vitro or in vivo experimental work in recent future.


Removing Metal Ions from Water with Graphene⁻Bovine Serum Albumin Hybrid Membrane.

  • Xiaoqing Yu‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

Here we report the fabrication of graphene oxide (GO)-based membranes covalently combined with bovine serum albumin (BSA) for metal ions detection. In this system, BSA acts as a transporter protein in the membrane and endows the membrane with selective recognition of Co2+, Cu2+, AuCl₄-, and Fe2+. Combining the metal-binding ability of BSA and the large surface area of GO, the hybrid membrane can be used as a water purification strategy to selectively absorb a large amount of AuCl₄- from HAuCl₄ solution. Moreover, BSA could reduce the membrane-immobilized AuCl₄- by adding sodium borohydride (NaBH₄). Interestingly, adsorption experiments on three kinds of metal ions showed that the GO⁻BSA membrane had good selective adsorption of Co2+ compared with Cu2+ and Fe2+. The morphology and composition changes of the membrane were observed with atomic force microscopy (AFM) and Raman spectroscopy, respectively. It is expected that this facile strategy for fabricating large-scale graphene-biomolecule membranes will spark inspirations in the development of functional nanomaterials and wastewater purification.


Sodium alginate microneedle arrays mediate the transdermal delivery of bovine serum albumin.

  • Yusuf K Demir‎ et al.
  • PloS one‎
  • 2013‎

The "poke and release" strategy for the delivery of macromolecules using polymeric microneedle (MN) is of great importance because it eliminates microneedle reuse, the risks of biohazardous sharps and cross contamination, and it requires no special disposal mechanism. The main objective of this study was the determination of the stability and delivery of bovine serum albumin (BSA) that was transported across human skin via sodium alginate (SA) microneedle arrays (MNs) and SA needle free patches using two different analytical methods.


Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking.

  • Hamed Hamishehkar‎ et al.
  • BioImpacts : BI‎
  • 2016‎

Introduction: The drug-plasma protein interaction is a fundamental issue in guessing and checking the serious drug side effects related with other drugs. The purpose of this research was to study the interaction of cephalexin with bovine serum albumin (BSA) and displacement reaction using site probes. Methods: The interaction mechanism concerning cephalexin (CPL) with BSA was investigated using various spectroscopic methods and molecular modeling method. The binding sites number, n, apparent binding constant, K, and thermodynamic parameters, ΔG0, ΔH0, and ΔS0 were considered at different temperatures. To evaluate the experimental results, molecular docking modeling was calculated. Results: The distance, r=1.156 nm between BSA and CPL were found in accordance with the Forster theory of non-radiation energy transfer (FRET) indicating energy transfer occurs between BSA and CPL. According to the binding parameters and ΔG0= negative values and ΔS0= 28.275 j mol-1K-1, a static quenching process is effective in the CPL-BSA interaction spontaneously. ΔG0 for the CPL-BSA complex obtained from the docking simulation is -28.99 kj mol-1, which is close to experimental ΔG of binding, -21.349 kj mol-1 that indicates a good agreement between the results of docking methods and experimental data. Conclusion: The outcomes of spectroscopic methods revealed that the conformation of BSA changed during drug-BSA interaction. The results of FRET propose that CPL quenches the fluorescence of BSA by static quenching and FRET. The displacement study showed that phenylbutazon and ketoprofen displaced CPL, indicating that its binding site on albumin is site I and Gentamicin cannot be displaced from the binding site of CPL. All results of molecular docking method agreed with the results of experimental data.


Induction of axial chirality in divanillin by interaction with bovine serum albumin.

  • Diego Venturini‎ et al.
  • PloS one‎
  • 2017‎

Vanillin is a plant secondary metabolite and has numerous beneficial health applications. Divanillin is the homodimer of vanillin and used as a taste enhancer compound and also a promissory anticancer drug. Here, divanillin was synthesized and studied in the context of its interaction with bovine serum albumin (BSA). We found that divanillin acquires axial chirality when complexed with BSA. This chiroptical property was demonstrated by a strong induced circular dichroism (ICD) signal. In agreement with this finding, the association constant between BSA and divanillin (3.3 x 105 mol-1L) was higher compared to its precursor vanillin (7.3 x 104 mol-1L). The ICD signal was used for evaluation of the association constant, demonstration of the reversibility of the interaction and determination of the binding site, revealing that divanillin has preference for Sudlow's site I in BSA. This property was confirmed by displacement of the fluorescent markers warfarin (site I) and dansyl-L-proline (site II). Molecular docking simulation confirmed the higher affinity of divanillin to site I. The highest scored conformation obtained by docking (dihedral angle 242°) was used for calculation of the circular dichroism spectrum of divanillin using Time-Dependent Density Functional Theory (TDDFT). The theoretical spectrum showed good similarity with the experimental ICD. In summary, we have demonstrated that by interacting with the chiral cavities in BSA, divanillin became a atropos biphenyl, i.e., the free rotation around the single bound that links the aromatic rings was impeded. This phenomenon can be explained considering the interactions of divanillin with amino acid residues in the binding site of the protein. This chiroptical property can be very useful for studying the effects of divanillin in biological systems. Considering the potential pharmacological application of divanillin, these findings will be helpful for researchers interested in the pharmacological properties of this compound.


Effective Chemotherapy of Lung Cancer Using Bovine Serum Albumin-Coated Hydroxyapatite Nanoparticles.

  • Gongzhuo Li‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Successful chemotherapy of lung cancer relies largely on the use of a good drug delivery system (DDS). We successfully constructed a hybrid DDS comprised of hydroxyapatite (HAP) nanoparticles and bovine serum albumin (BSA). MATERIAL AND METHODS The HAP nanoparticles were selected as the core to encapsulate the anticancer drug doxorubicin (DOX), followed by surface modification of BSA as a stabilizer and shielding corona to finally prepare the hybrid DDS (BSA/HAP/DOX). RESULTS The following characterizations revealed that BSA/HAP nanoparticles have high stability, high biocompatibility, and good DOX-loading capability to meet in vivo applications. Moreover, BSA/HAP/DOX can enhance the cellular uptake of drug in A549 cells (lung cancer cells). Most importantly, BSA/HAP had better in vivo tumor targetability than bare HAP nanoparticles, which resulted in stronger anticancer efficacy both in vitro and in vivo than free DOX or HAP/DOX, and greatly decreased the adverse effects of free DOX. CONCLUSIONS Our hybrid DDS shows potential to be applied in more advanced application of cancer therapy.


Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA).

  • Yasuto Taguchi‎ et al.
  • Nuclear receptor‎
  • 2004‎

BACKGROUND: The classic model of estrogen action requires that the estrogen receptor (ER) activates gene expression by binding directly or indirectly to DNA. Recent studies, however, strongly suggest that ER can act through nongenomic signal transduction pathways and may be mediated by a membrane bound form of the ER. Estradiol covalently linked to membrane impermeable BSA (E2-BSA) has been widely used as an agent to study these novel membrane-associated ER events. However, a recent report suggests that E2-BSA does not compete for E2 binding to purified ER in vitro. To resolve this apparent discrepancy, we performed competition studies examining the binding of E2 and E2-BSA to both purified ER preparations and ER within intact cells. To eliminate potential artifacts due to contamination of commercially available E2-BSA preparations with unconjugated E2 (usually between 3-5%), the latter was carefully removed by ultrafiltration. RESULTS: As previously reported, a 10-to 1000-fold molar excess of E2-BSA was unable to compete with 3H-E2 binding to ER when added simultaneously. However, when ER was pre-incubated with the same concentrations of E2-BSA, the binding of 3H-E2 was significantly reduced. E2-BSA binding to a putative membrane-associated ER was directly visualized using fluorescein labeled E2-BSA (E2-BSA-FITC). Staining was restricted to the cell membrane when E2-BSA-FITC was incubated with stable transfectants of the murine ERalpha within ER-negative HeLa cells and with MC7 cells that endogenously produce ERalpha. This staining appeared highly specific since it was competed by pre-incubation with E2 in a dose dependent manner and with the competitor ICI-182,780. CONCLUSIONS: These results demonstrate that E2-BSA does bind to purified ER in vitro and to ER in intact cells. It seems likely that the size and structure of E2-BSA requires more energy for it to bind to the ER and consequently binds more slowly than E2. More importantly, these findings demonstrate that in intact cells that express ER, E2-BSA binding is localized to the cell membrane, strongly suggesting a membrane bound form of the ER.


Bovine Serum Albumin Nanoparticles Enhanced the Intranasal Bioavailability of Silybin in Rats.

  • Ana Paula Santos Tartari‎ et al.
  • Pharmaceutics‎
  • 2023‎

Silybin (SLB), an important flavonoid from silymarin, displays significant hepatoprotective, anticancer, antioxidant, and neuroprotective effects. However, its therapeutic efficacy is limited by its low solubility and bioavailability. To address these challenges, we engineered bovine serum albumin (BSA) nanoparticles (NP) loaded with SLB (BSA-NP/SLB) using the coacervation method. BSA-SLB NP exhibited a spherical shape, a mean size of 197 nm, a polydispersity index of 0.275, a zeta potential of -34 mV, and an entrapment efficiency of 67%. X-ray diffraction analysis indicated amorphization of SLB upon encapsulation. Formulation stability was upheld over 180 days. In vitro release assays demonstrated controlled diffusion-erosion release, with approximately 40% SLB released within 0.5 h and 100% over 12 h. Intranasal administration of BSA-NP/SLB in rats improved SLB bioavailability by fourfold compared to free SLB. These findings highlight the promising potential of intranasally administered BSA-NP/SLB as an alternative approach to enhance SLB bioavailability, paving the way for innovative therapeutic applications.


Binding interaction of phosphorus heterocycles with bovine serum albumin: A biochemical study.

  • Swarup Roy‎ et al.
  • Journal of pharmaceutical analysis‎
  • 2017‎

Interaction between bovine serum albumin (BSA) and phosphorus heterocycles (PHs) was studied using multi-spectroscopic techniques. The results indicated the high binding affinity of PHs to BSA as it quenches the intrinsic fluorescence of BSA. The experimental data suggested the fluorescence quenching mechanism between PHs and BSA as a dynamic quenching. From the UV-vis studies, the apparent association constant (Kapp) was found to be 9.25×102, 1.27×104 and 9.01×102 L/mol for the interaction of BSA with PH-1, PH-2 and PH-3 respectively. According to the Förster's non-radiation energy transfer (FRET) theory, the binding distances between BSA and PHs were calculated. The binding distances (r) of PH-1, PH-2 and PH-3 were found to be 2.86, 3.03, and 5.12 nm, respectively, indicating energy transfer occurs between BSA and PHs. The binding constants of the PHs obtained from the fluorescence quenching data were found to be decreased with increase of temperature. The negative values of the thermodynamic parameters ΔH, ΔS and ΔG at different temperatures revealed that the binding process is spontaneous; hydrogen bonds and van der Waals interaction were the main force to stabilize the complex. The microenvironment of the protein-binding site was studied by synchronous fluorescence and circular dichroism (CD) techniques and data indicated that the conformation of BSA changed in the presence of PHs. Finally, we studied the BSA-PHs docking using Autodock and results suggest that PHs is located in the cleft between the domains of BSA.


Enhanced Bioavailability of Dihydrotanshinone I-Bovine Serum Albumin Nanoparticles for Stroke Therapy.

  • Yanru Ren‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Dihydrotanshinone I (DHT) is a natural component in Salvia miltiorrhiza and has been widely researched for its multiple bioactivities. However, poor solubility and biocompatibility of DHT limit its desirable application for clinical purposes. Herein, DHT was encapsulated with bovine serum albumin (BSA) to enhance bioavailability. Compared to free DHT, DHT-BSA NPs (nanoparticles) showed an improved solubility in normal saline and increased protection against hydrogen peroxide-induced oxidative damage in PC12 cells. In addition, DHT-BSA NPs administered by intravenous injection displayed a significant efficacy in the middle cerebral artery occlusion/reperfusion models, without any impact on the cerebral blood flow. In summary, DHT-BSA NPs show an enhanced bioavailability compared with free DHT and a successful penetration into the central nervous system for stroke therapy, demonstrating their application potential in cardio-cerebrovascular diseases.


Interaction of repaglinide with bovine serum albumin: Spectroscopic and molecular docking approaches.

  • Suma K Pawar‎ et al.
  • Journal of pharmaceutical analysis‎
  • 2019‎

Repaglinide (RPG) regulates the amount of glucose by stimulating the pancreas to release insulin in the blood. In view of its biological importance, we have examined the interaction between RPG and a model protein, bovine serum albumin (BSA) employing various spectroscopic, electrochemical and molecular docking methods. Fluorescence spectra of BSA were recorded in the presence and absence of RPG in phosphate buffer of pH 7.4. Fluorescence intensity of BSA was decreased upon the addition of increased concentrations of RPG, indicating the interaction between RPG and BSA. Stern-Volmer quenching analysis results revealed that RPG quenched the intensity of BSA through dynamic quenching mechanism. This was further confirmed from the time-resolved fluorescence measurements. The binding constant as calculated from the spectroscopic and voltammetric results was observed to be in the order of 104 M-1 at 298 K, suggesting the moderate binding affinity between RPG and BSA. Competitive experimental results revealed that the primary binding site for RPG on BSA was site II. Absorption and circular dichroism studies indicated the changes in the secondary structure of BSA upon its interaction with RPG. Molecular simulation studies pointed out that RPG was bound to BSA in the hydrophobic pocket of site II.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: