Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 225 papers

Mapping of deletion breakpoints at the CDKN2A locus in melanoma: detection of MTAP-ANRIL fusion transcripts.

  • Huaping Xie‎ et al.
  • Oncotarget‎
  • 2016‎

Genomic locus at chromosome 9p21 that contains the CDKN2A and CDKN2B tumor suppressor genes is inactivated through mutations, deletions and promoter methylation in multiple human cancers. Additionally, the locus encodes an anti-sense RNA (ANRIL). Both hemizygous and homozygous deletions at the locus targeting multiple genes are fairly common in different cancers. We in this study investigated breakpoints in five melanoma cell lines, derived from metastasized tumors, with previously identified homozygous deletions using array comparative genomic hybridization (aCGH). For breakpoint mapping, we used primer approximation multiplex PCR (PAMP) and inverse PCR techniques. Our results showed that three cell lines carried complex rearrangements. In two other cell lines, with focal deletions of 141 kb and 181 kb, we identified fusion gene products, involving MTAP and ANRIL. We also confirmed the complex rearrangements and focal deletions in DNA from tumor tissues corresponding to three cell lines. The rapid amplification of 3'cDNA ends (3'RACE) carried out on transcripts resulted in identification of three isoforms of MTAP-ANRIL fusion gene. Screening of cDNA from 64 melanoma cell lines resulted in detection of fusion transcripts in 13 (20%) cell lines that involved exons 4-7 of the MTAP and exon 2 or 5 of the ANRIL genes. We also detected fusion transcripts involving MTAP and ANRIL in two of the seven primary melanoma tumors with focal deletion at the locus. The results from the study, besides identifying complex rearrangements involving CDKN2A locus, show frequent occurrence of fusion transcripts involving MTAP and ANRIL genes.


Collecting duct carcinoma of the kidney is associated with CDKN2A deletion and SLC family gene up-regulation.

  • Jianmin Wang‎ et al.
  • Oncotarget‎
  • 2016‎

The genetic landscape and molecular features of collecting duct carcinoma (CDC) of the kidney remain largely unknown. Herein, we performed whole exome sequencing (WES) and transcriptome sequencing (RNASeq) on 7 CDC samples (CDC1 -7). Among the 7 samples, 4 samples with matched non-tumor tissue were used for copy number analysis by SNP array data. No recurrent somatic SNVs were observed except for MLL, which was found to be mutated (p.V297I and p.F407C) in 2 samples. We identified somatic SNVs in 14 other cancer census genes including: ATM, CREBBP, PRDM1, CBFB, FBXW7, IKZF1, KDR, KRAS, NACA, NF2, NUP98, SS18, TP53, and ZNF521. SNP array data identified a CDKN2A homozygous deletion in 3 samples and SNV analysis showed a non-sense mutation of the CDKN2A gene with unknown somatic status. To estimate the recurrent rate of CDKN2A abnormalities, we performed FISH screening of additional samples and confirmed the frequent loss (62.5%) of CDKN2A expression. Since cisplatin based therapy is the common treatment option for CDC, we investigated the expression of solute carrier (SLC) family transporters and found 45% alteration. In addition, SLC7A11 (cystine transporter, xCT), a cisplatin resistance associated gene, was found to be overexpressed in 4 out of 5 (80%) cases of CDC tumors tested, as compared to matched non-tumor tissue. In summary, our study provides a comprehensive genomic analysis of CDC and identifies potential pathways suitable for targeted therapies.


A novel heterozygous germline deletion in MSH2 gene in a five generation Chinese family with Lynch syndrome.

  • Bin Wu‎ et al.
  • Oncotarget‎
  • 2017‎

Lynch syndrome (LS) is one of the most common familial forms of colorectal cancer predisposing syndrome with an autosomal dominant mode of inheritance. LS is caused by the germline mutations in DNA mismatch repair (MMR) genes including MSH2, MLH1, MSH6 and PMS2. Clinically, LS is characterized by high incidence of early-onset colorectal cancer as well as endometrial, small intestinal and urinary tract cancers, usually occur in the third to fourth decade of the life. Here we describe a five generation Chinese family with LS clinically diagnosed according to the Amsterdam II criteria. Immuno-histochemical staining of MSH2 and MSH6 shows only foci nuclear positive on the surface of the tumor with strong expression of MLH1 and PMS2 with diffuse immunoreactivity. In order to dig into the molecular basis of this LS pedigree, we collected the proband's blood sample, extracted the genomic DNA and applied the genetic screening. As a result, we identified a novel heterozygous deletion in MSH2 gene by targeted next generation sequencing, which is also proved to be co-segregated among other affected family members by following validation. To our knowledge, this novel heterozygous deletion (c.1676_1679 delTAAA) in MSH2 gene causes frameshift mutation (p.Asn560Lysfs*29) and leads to the formation of a truncated MSH2 protein which is confirmed to be a deleterious mutation according to the variant interpretation guidelines of American College of Medical Genetics and Genomics (ACMG). Identification of novel DNA mismatch repair (MMR) gene mutations can definitely benefit to the clinical diagnosis and management.


HBV polymerase overexpression due to large core gene deletion enhances hepatoma cell growth by binding inhibition of microRNA-100.

  • Ya-Hui Huang‎ et al.
  • Oncotarget‎
  • 2016‎

Different types of hepatitis B virus (HBV) core gene deletion mutants were identified in chronic hepatitis B patients. However, their clinical roles in different stages of natural chronic HBV infection remained unclear. To address this issue, HBV core genes were sequenced in three gender- and age-matched patient groups diagnosed as chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC), respectively. Functional analysis of the identified mutants was performed. A novel type of large-fragment core gene deletion (LFCD) was identified exclusively in HCC patients and significantly associated with unfavorable postoperative survival. The presence of LFCDs resulted in generation of precore-polymerase fusion protein or brought the polymerase reading frame under direct control of HBV precore/core promoter, leading to its over-expression. Enhanced cell proliferation and increased tumorigenicity in nude mice were found in hepatoma cells expressing LFCDs. Because of the epsilon-binding ability of HBV polymerase, we hypothesized that the over-expressed polymerase carrying aberrant amino-terminal sequence could bind to cellular microRNAs. Screening of a panel of microRNAs revealed physical association of a precore-polymerase fusion protein with microRNA-100. A binding inhibition effect on microRNA-100 by the precore-polymerase fusion protein with up-regulation of its target, polo-like kinase 1 (PLK1), was discovered. The binding inhibition and growth promoting effects could be reversed by overexpressing microRNA-100. Together, HCC patients carrying hepatitis B large-fragment core gene deletion mutants had an unfavorable postoperative prognosis. The growth promoting effect was partly due to polymerase overexpression, leading to binding inhibition of microRNA-100 and up-regulation of PLK1.


A novel pathogenic large germline deletion in adenomatous polyposis coli gene in a Chinese family with familial adenomatous polyposis.

  • Zhao Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Germline mutations of the APC gene are associated with an autosomal dominant precancerous condition, termed familial adenomatous polyposis (FAP). FAP is clinically manifested by the presence of multiple colorectal adenomas or polyps. Gradually, these colorectal adenomas or polyps inevitably result in colorectal cancer by the third-to fourth decade of life. Surgical interventions or total proctocolectomy is the best possible treatment for FAP. Here, we present a clinical molecular study of a five generation Chinese family with FAP. Diagnosis of FAP was made on the basis of clinical manifestations, family history and medical (colonoscopy and histopathology) records. Blood samples were collected and genomic DNA was extracted. Genetic screening of the APC gene was performed by targeted next-generation sequencing and quantitative real-time PCR. Targeted next generation sequencing identified a novel heterozygous large deletion [exon5-exon16; c.423_8532del] of APC gene, which segregated with the FAP phenotypes in the proband and in all the affected family members. Unaffected family members and normal controls did not carry this deletion. In the Chinese population, most of the previously reported APC gene mutations are missense mutations. This is the first report describing the largest deletion of the APC gene in the Chinese population associated with FAP.


Establishment and antitumor effects of dasatinib and PKI-587 in BD-138T, a patient-derived muscle invasive bladder cancer preclinical platform with concomitant EGFR amplification and PTEN deletion.

  • Nakho Chang‎ et al.
  • Oncotarget‎
  • 2016‎

Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion.


Molecular diagnosis of citrin deficiency in an infant with intrahepatic cholestasis: identification of a 21.7kb gross deletion that completely silences the transcriptional and translational expression of the affected SLC25A13 allele.

  • Zhan-Hui Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) arises from biallelic SLC25A13 mutations, and SLC25A13 analysis provides reliable evidences for NICCD definite diagnosis. However, novel large insertions/deletions in this gene could not be detected just by conventional DNA analysis. This study aimed to explore definite diagnostic evidences for an infant highly-suspected to have NICCD. Prevalent mutation screening and Sanger sequencing of SLC25A13 gene just revealed a paternally-inherited mutation c.851_854del4. Nevertheless, neither citrin protein nor SLC25A13 transcripts of maternal origin could be detected on Western blotting and cDNA cloning analysis, respectively. On this basis, the hidden maternal mutation was precisely positioned using SNP analysis and semi-quantitative PCR, and finally identified as a novel large deletion c.-3251_c.15+18443del21709bp, which involved the SLC25A13 promoter region and the entire exon 1 where locates the translation initiation codon. Hence, NICCD was definitely diagnosed in the infant. To the best of our knowledge, the novel gross deletion, which silenced the transcriptional and translational expression of the affected SLC25A13 allele, is the hitherto largest deletion in SLC25A13 mutation spectrum. The Western blotting approach using mitochondrial protein extracted from expanded peripheral blood lymphocytes, of particular note, might be a new minimally-invasive and more-feasible molecular tool for NICCD diagnosis.


The 30 kb deletion in the APOBEC3 cluster decreases APOBEC3A and APOBEC3B expression and creates a transcriptionally active hybrid gene but does not associate with breast cancer in the European population.

  • Katarzyna Klonowska‎ et al.
  • Oncotarget‎
  • 2017‎

APOBEC3B, in addition to other members of the APOBEC3 gene family, has recently been intensively studied due to its identification as a gene whose activation in cancer is responsible for a specific pattern of massively occurring somatic mutations. It was recently shown that a common large deletion in the APOBEC3 cluster (the APOBEC3B deletion) may increase the risk of breast cancer. However, conflicting evidence regarding this association was also reported. In the first step of our study, using different approaches, including an in-house designed multiplex ligation-dependent probe amplification assay, we analyzed the structure of the deletion and showed that although the breakpoints are located in highly homologous regions, which may generate recurrent occurrence of similar but not identical deletions, there is no sign of deletion heterogeneity. This knowledge allowed us to distinguish transcripts of all affected genes, including the highly homologous canonical APOBEC3A and APOBEC3B, and the hybrid APOBEC3A/APOBEC3B gene. We unambiguously confirmed the presence of the hybrid transcript and showed that the APOBEC3B deletion negatively correlates with APOBEC3A and APOBEC3B expression and positively correlates with APOBEC3A/APOBEC3B expression, whose mRNA level is >10-fold and >1500-fold lower than the level of APOBEC3A and APOBEC3B, respectively. In the next step, we performed a large-scale association study in three different cohorts (2972 cases and 3682 controls) and showed no association of the deletion with breast cancer, familial breast cancer or ovarian cancer. Further, we conducted a meta-analysis that confirmed the lack of the association of the deletion with breast cancer in non-Asian populations.


Recurrent genetic defects on chromosome 5q in myeloid neoplasms.

  • Naoko Hosono‎ et al.
  • Oncotarget‎
  • 2017‎

Deletion of chromosome 5q (del(5q)) is the most common karyotypic abnormality in myeloid neoplasms.


A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer.

  • Runze Jiang‎ et al.
  • Oncotarget‎
  • 2015‎

Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history.


Associations between the MDM2 promoter P1 polymorphism del1518 (rs3730485) and incidence of cancer of the breast, lung, colon and prostate.

  • Liv B Gansmo‎ et al.
  • Oncotarget‎
  • 2016‎

The MDM2 promoter region contains several polymorphisms, some of which have been associated with MDM2 expression, cancer risk and age at cancer onset. del1518 (rs3730485) is an indel polymorphism residing in the MDM2 promoter P1 and is in almost complete linkage disequilibrium with the MDM2 promoter P2 polymorphism SNP309T>G (rs2279744). Cancer risk assessments of del1518 have previously been conducted in relatively small Chinese populations only. In this study we assessed the genotype distribution of del1518 among healthy Caucasians, African Americans and Chinese, and we estimated the Odds Ratios (OR) for incident cancer of the breast, colon, lung and prostate (n=7,081) as compared to controls (n=3,749) in a large Caucasian (Norwegian) cohort.We found the genotypes of the del1518 to vary significantly between healthy Caucasians, African-Americans and Chinese (p< 1×10-5). Further, we found a positive association of the del1518 del-allele with risk of colon cancer (dominant model: OR = 1.15; 95 % CI = 1.01 - 1.31). Stratifying according to SNP309 status, this association remained among carriers of the SNP309TG genotype (OR = 1.21; 95 % CI = 1.01 - 1.46), but with no clear association among carriers of the SNP309TT genotype. In conclusion, our findings suggest del1518 to be associated with increased risk of colon cancer.


MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4.

  • Yingqing Li‎ et al.
  • Oncotarget‎
  • 2016‎

Recent studies have reported that miRNAs might play critical roles in acute myocardial infarction (AMI). The objective of this study is to investigate the role of miR-499-5p in AMI and its potential molecular mechanisms. The expression level of MiR-499-5p was remarkably decreased in the infarcted myocardial tissues and in the cultured neonatal rat cardiomyocytes induced by hypoxia. Overexpression or knockdown of miR-499-5p decreased or increased the apoptotic rates of cultured cardiomyocytes in vitro. In addition, ectopic overexpression of miR-499-5p in the rat AMI models with agomir reduced the myocardial infarct size through decreasing the cardiomyocytes apoptosis in the infarcted area of the rat hearts. PDCD4 (programmed cell death 4) was verified as a direct target of miR-499-5p by luciferase report assay, and ectopic overexpression or inhibition of miR-499-5p could inhibit or increase the PDCD4 expression at both the mRNA and protein levels. Furthermore, we found that ectopic overexpression of PDCD4 without miR-499-5p binding sites reversed miR-499-5p-mediated cardiomyocytes apoptosis. Together, these findings revealed the role of miR-499-5p in protecting the cardiomyocytes against apoptosis induced by AMI via its direct target PDCD4, which providing evidence for the miR-499-5p/PDCD4 pathway as a potential therapeutic target for patients with AMI.


Whole-exome analysis in osteosarcoma to identify a personalized therapy.

  • Caterina Chiappetta‎ et al.
  • Oncotarget‎
  • 2017‎

Osteosarcoma is the most common pediatric primary non-hematopoietic bone tumor. Survival of these young patients is related to the response to chemotherapy and development of metastases. Despite many advances in cancer research, chemotherapy regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential to investigate new specific molecular therapies for osteosarcoma to increase the survival rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies of patients with conventional high grade osteosarcoma to advance our understanding of their genetic underpinnings and to correlate the genetic alteration with the clinical and pathological features of each patient to identify a personalized therapy. We identified 18,275 somatic variations in 8,247 genes and we found three mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the highest number of variations; it is an important component of a histone H3 lysine 4 methyltransferase complex and it is one of the histone modifiers previously implicated in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15 genes that showed variations only in patients that did not respond to therapy and developed metastasis and some of these genes are involved in carcinogenesis and tumor progression in other tumors. These data could offer the opportunity to get a key molecular target to identify possible new strategies for early diagnosis and new therapeutic approaches for osteosarcoma and to provide a tailored treatment for each patient based on their genetic profile.


FAM190A rearrangements provide a multitude of individualized tumor signatures and neo-antigens in cancer.

  • Francesca Scrimieri‎ et al.
  • Oncotarget‎
  • 2011‎

We found FAM190A transcripts to have internal rearrangements in 40% (19/48) of unselected human cancers. Most of these tumors (84%) had in-frame structures, 94% of which involved deletion of exon 9. The FAM190A gene is located at 4q22.1 in a region of common fragility, FRA4F. Although normally stable in somatic cells, common fragile sites can be hotspots of rearrangement in cancer. The genomic deletion patterns observed at some sites, including FRA4F at 4q22.1, are proposed to be the result of selection for disrupted tumor-suppressor genes. Our evidence, however, indicated additional patterns for FAM190A. We found genomic deletions accounted for some FAM190A in-frame structures, and cases pre-selected for FAM190A genomic deletions had a yet higher prevalence of FAM190A rearrangements. Our evidence of widespread in-frame heterozygous and homozygous rearrangements affecting this gene in tumors of multiple types leads speculation on structural grounds that the mutant forms may retain, provide new, or possibly convey dominant-negative functions. Although a functionally uncharacterized gene, it is evolutionary conserved across vertebrates. In addition to its potential oncogenic role, the in-frame deletions predict the formation of cancer-specific FAM190A peptide sequences (neo-antigens) with potential diagnostic and therapeutic usefulness.


High CXCR4 expression impairs rituximab response and the prognosis of R-CHOP-treated diffuse large B-cell lymphoma patients.

  • Maria Bach Laursen‎ et al.
  • Oncotarget‎
  • 2019‎

Survival of diffuse large B-cell lymphoma (DLBCL) patients has improved by inclusion of rituximab. Refractory/recurrent disease caused by treatment resistance is, however, a major problem. Determinants of rituximab sensitivity are not fully understood, but effect of rituximab are enhanced by antagonizing cell surface receptor CXCR4. In a two-step strategy, we tested the hypothesis that prognostic value of CXCR4 in DLBCL relates to rituximab treatment, due to a hampering effect of CXCR4 on the response of DLBCL cells to rituximab. First, by investigating the prognostic impact of CXCR4 mRNA expression separately for CHOP (n=181) and R-CHOP (n=233) cohorts and, second, by assessing the interaction between CXCR4 and rituximab in DLBCL cell lines. High CXCR4 expression level was significantly associated with poor outcome only for R-CHOP-treated patients, independent of IPI score, CD20 expression, ABC/GCB and B-cell-associated gene signature (BAGS) classifications. s. For responsive cell lines, inverse correlation was observed between rituximab sensitivity and CXCR4 surface expression, rituximab induced upregulation of surface-expressed CXCR4, and growth-inhibitory effect of rituximab increased by plerixafor, supporting negative impact of CXCR4 on rituximab function. In conclusion, CXCR4 is a promising independent prognostic marker for R-CHOP-treated DLBCL patients, possibly due to inverse correlation between CXCR4 expression and rituximab sensitivity.


Loss of digestive organ expansion factor (Diexf) reveals an essential role during murine embryonic development that is independent of p53.

  • Neeraj K Aryal‎ et al.
  • Oncotarget‎
  • 2017‎

Increased levels of inhibitors of the p53 tumor suppressor such as Mdm2 and Mdm4 drive tumor development and thus serve as targets for therapeutic intervention. Recently, digestive organ expansion factor (Diexf) has been identified as a novel inhibitor of p53 in zebrafish. Here, we address the potential role of Diexf as a regulator of the p53 pathway in mammals by generating Diexf knockout mice. We demonstrate that, similar to Mdm2 and Mdm4, homozygous deletion of Diexf is embryonic lethal. However, unlike in Mdm2 and Mdm4 mice, loss of p53 does not rescue this phenotype. Moreover, Diexf heterozygous animals are not sensitive to sub-lethal ionizing radiation. Thus, we conclude that Diexf is an essential developmental gene in the mouse, but is not a significant regulator of the p53 pathway during development or in response to ionizing radiation.


Molecular spectrum of TP53 mutations in plasma cell dyscrasias by next generation sequencing: an Italian cohort study and overview of the literature.

  • Marta Lionetti‎ et al.
  • Oncotarget‎
  • 2016‎

The prevalence of TP53 mutations greatly varies between tumor types; in multiple myeloma (MM) they were rarely detected at presentation, while increased frequency was reported with disease progression. Using next-generation sequencing, we analyzed TP53 exons 4-9 in a large representative cohort comprising patients with MM at diagnosis and more aggressive forms of plasma cell (PC) dyscrasia, identifying mutations in 4/129 (3%) MM, 6/24 (25%) primary PC leukemia, and 2/10 (20%) secondary PC leukemia cases. A similar increase in prevalence associated with disease aggressiveness (5%, 29.2% and 44%, respectively) was observed for TP53 deletion. Interestingly, in five patients mutations were not concomitant with TP53 deletion. Furthermore, longitudinal analysis revealed the acquisition of TP53 mutations in three of nineteen cases analyzed at relapse. Identified variants were mostly missense mutations concentrated in the DNA binding domain, only partly reflecting the pattern globally observed in human cancers. Our data confirm that TP53 mutations are rare in MM at presentation and rather represent a marker of progression, similarly to del(17p); however, their occurrence even in absence of deletions supports the importance of their assessment in patients with PC dyscrasia, in terms of both risk stratification and therapeutic implications.


3'Igh enhancers hs3b/hs4 are dispensable for Myc deregulation in mouse plasmacytomas with T(12;15) translocations.

  • Alexander L Kovalchuk‎ et al.
  • Oncotarget‎
  • 2018‎

Myc-deregulating T(12;15) chromosomal translocations are the hallmark cytogenetic abnormalities of murine plasmacytomas (PCTs). In most PCTs, the immunoglobulin heavy chain (Igh) locus is broken between the Eμ enhancer and the 3' regulatory region (3'RR), making the latter the major candidate for orchestrating Myc deregulation. To elucidate the role of the Igh3'RR in tumorigenesis, we induced PCTs in Bcl-xL-transgenic mice deficient for the major Igh3'RR enhancer elements, hs3b and hs4 (hs3b-4-/-). Contrary to previous observations using a mouse lymphoma model, which showed no tumors with peripheral B-cell phenotype in hs3b-4-/- mice, these animals developed T(12;15)-positive PCTs, although with a lower incidence than hs3b-4+/+ (wild-type, WT) controls. In heterozygous hs3b-4+/- mice there was no allelic bias in targeting Igh for T(12;15). Molecular analyses of Igh/Myc junctions revealed dominance of Sμ region breakpoints versus the prevalence of Sγ or Sα in WT controls. Myc expression and Ig secretion in hs3b-4-/- PCTs did not differ from WT controls. We also evaluated the effect of a complete Igh3'RR deletion on Myc expression in the context of an established Igh/Myc translocation in ARS/Igh11-transgenic PCT cell lines. Cre-mediated deletion of the Igh3'RR resulted in gradual reduction of Myc expression, loss of proliferative activity and increased cell death, confirming the necessity of the Igh3'RR for Myc deregulation by T(12;15).


Genetic alterations and their clinical implications in gastric cancer peritoneal carcinomatosis revealed by whole-exome sequencing of malignant ascites.

  • Byungho Lim‎ et al.
  • Oncotarget‎
  • 2016‎

Peritoneal carcinomatosis accompanied by malignant ascites is a major cause of death of advanced gastric cancer (GC). To comprehensively characterize the underlying genomic events involved in GC peritoneal carcinomatosis, we analyzed whole-exome sequences of normal gastric tissues, primary tumors, and malignant ascites from eight GC patients. We identified a unique mutational signature biased toward C-to-A substitutions in malignant ascites. In contrast, the patients who received treatment of adjuvant chemotherapy showed a high rate of C-to-T substitutions along with hypermutation in malignant ascites. Comparative analysis revealed several candidate mutations for GC peritoneal carcinomatosis: recurrent mutations in COL4A6, INTS2, and PTPN13; mutations in druggable genes including TEP1, PRKCD, BRAF, ERBB4, PIK3CA, HDAC9, FYN, FASN, BIRC2, FLT3, ROCK1, CD22, and PIK3C2B; and mutations in metastasis-associated genes including TNFSF12, L1CAM, DIAPH3, ROCK1, TGFBR1, MYO9B, NR4A1, and RHOA. Notably, gene ontology analysis revealed the significant enrichment of mutations in the Rho-ROCK signaling pathway-associated biological processes in malignant ascites. At least four of the eight patients acquired somatic mutations in the Rho-ROCK pathway components, suggesting the possible relevance of this pathway to GC peritoneal carcinomatosis. These results provide a genome-wide molecular understanding of GC peritoneal carcinomatosis and its clinical implications, thereby facilitating the development of effective therapeutics.


microRNA-4717 differentially interacts with its polymorphic target in the PD1 3' untranslated region: A mechanism for regulating PD-1 expression and function in HBV-associated liver diseases.

  • Guoyu Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

Programmed cell death-1 (PD-1) is involved in hepatitis B virus (HBV) infection, the leading cause of hepatocellular carcinoma (HCC) worldwide. Single-nucleotide polymorphism, rs10204525, located in the PD1 3' untranslated regions (UTR), is associated with chronic HBV infection. MicroRNAs (miRNAs) regulate gene expression via specific binding to the target 3'UTR of mRNA. In this study, three miRNAs were predicted to putatively interact with PD1 rs10204525 polymorphic site of allele G. One of them, miRNA-4717, was demonstrated to allele-specifically affect luciferase activity in a dose-dependent manner in cells transfected with vectors containing different rs10204525 alleles. In lymphocytes from chronic HBV patients withrs10204525 genotype GG, miR-4717 mimics significantly decreased PD-1 expression and increased (TNF)-α and interferon (IFN)-γ production. miR-4717 inhibitor significantly increased PD-1 expression and decreased TNF-α and IFN-γ production although not significantly. In lymphocytes from chronic HBV patients with rs10204525 genotype AA, no similar effects were observed. miR-4717 levels in peripheral lymphocytes from patients with HBV-related chronic hepatitis, cirrhosis and HCC were significantly decreased. In conclusion, miR-4717 may allele-specifically regulate PD-1 expression through interaction with the 3' UTR of PD1 mRNA, leading to the alteration of immune regulation and affecting the susceptibility and disease course of chronic HBV infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: