Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 176 papers

NSDHL Frameshift Deletion in a Mixed Breed Dog with Progressive Epidermal Nevi.

  • Matthias Christen‎ et al.
  • Genes‎
  • 2020‎

Loss-of-function variants in the NSDHL gene have been associated with epidermal nevi in humans with congenital hemidysplasia, ichthyosiform nevi, and limb defects (CHILD) syndrome and in companion animals. The NSDHL gene codes for the NAD(P)-dependent steroid dehydrogenase-like protein, which is involved in cholesterol biosynthesis. In this study, a female Chihuahua cross with a clinical and histological phenotype consistent with progressive epidermal nevi is presented. All exons of the NSDHL candidate gene were amplified by PCR and analyzed by Sanger sequencing. A heterozygous frameshift variant, c.718_722delGAACA, was identified in the affected dog. In lesional skin, the vast majority of NSDHL transcripts lacked the five deleted bases. The variant is predicted to produce a premature stop codon truncating 34% of the encoded protein, p.Glu240Profs*17. The mutant allele was absent from 22 additionally genotyped Chihuahuas, as well as from 647 control dogs of diverse breeds and eight wolves. The available experimental data together with current knowledge about NSDHL variants and their functional impact in humans, dogs, and other species prompted us to classify this variant as pathogenic according to the ACMG guidelines that were previously established for human sequence variants. Therefore, we propose the c.718_722delGAACA variant as causative variant for the observed skin lesions in this dog.


Characterizing the DNA Methyltransferases of Haloferax volcanii via Bioinformatics, Gene Deletion, and SMRT Sequencing.

  • Matthew Ouellette‎ et al.
  • Genes‎
  • 2018‎

DNA methyltransferases (MTases), which catalyze the methylation of adenine and cytosine bases in DNA, can occur in bacteria and archaea alongside cognate restriction endonucleases (REases) in restriction-modification (RM) systems or independently as orphan MTases. Although DNA methylation and MTases have been well-characterized in bacteria, research into archaeal MTases has been limited. A previous study examined the genomic DNA methylation patterns (methylome) of the halophilic archaeon Haloferax volcanii, a model archaeal system which can be easily manipulated in laboratory settings, via single-molecule real-time (SMRT) sequencing and deletion of a putative MTase gene (HVO_A0006). In this follow-up study, we deleted other putative MTase genes in H. volcanii and sequenced the methylomes of the resulting deletion mutants via SMRT sequencing to characterize the genes responsible for DNA methylation. The results indicate that deletion of putative RM genes HVO_0794, HVO_A0006, and HVO_A0237 in a single strain abolished methylation of the sole cytosine motif in the genome (Cm4TAG). Amino acid alignments demonstrated that HVO_0794 shares homology with characterized cytosine CTAG MTases in other organisms, indicating that this MTase is responsible for Cm4TAG methylation in H. volcanii. The CTAG motif has high density at only one of the origins of replication, and there is no relative increase in CTAG motif frequency in the genome of H. volcanii, indicating that CTAG methylation might not have effectively taken over the role of regulating DNA replication and mismatch repair in the organism as previously predicted. Deletion of the putative Type I RM operon rmeRMS (HVO_2269-2271) resulted in abolished methylation of the adenine motif in the genome (GCAm6BN₆VTGC). Alignments of the MTase (HVO_2270) and site specificity subunit (HVO_2271) demonstrate homology with other characterized Type I MTases and site specificity subunits, indicating that the rmeRMS operon is responsible for adenine methylation in H. volcanii. Together with HVO_0794, these genes appear to be responsible for all detected methylation in H. volcanii, even though other putative MTases (HVO_C0040, HVO_A0079) share homology with characterized MTases in other organisms. We also report the construction of a multi-RM deletion mutant (ΔRM), with multiple RM genes deleted and with no methylation detected via SMRT sequencing, which we anticipate will be useful for future studies on DNA methylation in H. volcanii.


De Novo Development of mtDNA Deletion Due to Decreased POLG and SSBP1 Expression in Humans.

  • Yeonmi Lee‎ et al.
  • Genes‎
  • 2021‎

Defects in the mitochondrial genome (mitochondrial DNA (mtDNA)) are associated with both congenital and acquired disorders in humans. Nuclear-encoded DNA polymerase subunit gamma (POLG) plays an important role in mtDNA replication, and proofreading and mutations in POLG have been linked with increased mtDNA deletions. SSBP1 is also a crucial gene for mtDNA replication. Here, we describe a patient diagnosed with Pearson syndrome with large mtDNA deletions that were not detected in the somatic cells of the mother. Exome sequencing was used to evaluate the nuclear factors associated with the patient and his family, which revealed a paternal POLG mutation (c.868C > T) and a maternal SSBP1 mutation (c.320G > A). The patient showed lower POLG and SSBP1 expression than his healthy brothers and the general population of a similar age. Notably, c.868C in the wild-type allele was highly methylated in the patient compared to the same site in both his healthy brothers. These results suggest that the co- deficient expression of POLG and SSBP1 genes could contribute to the development of mtDNA deletion.


Deletion in the Bardet-Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs.

  • Suvi Mäkeläinen‎ et al.
  • Genes‎
  • 2020‎

In golden retriever dogs, a 1 bp deletion in the canine TTC8 gene has been shown to cause progressive retinal atrophy (PRA), the canine equivalent of retinitis pigmentosa. In humans, TTC8 is also implicated in Bardet-Biedl syndrome (BBS). To investigate if the affected dogs only exhibit a non-syndromic PRA or develop a syndromic ciliopathy similar to human BBS, we recruited 10 affected dogs to the study. The progression of PRA for two of the dogs was followed for 2 years, and a rigorous clinical characterization allowed a careful comparison with primary and secondary characteristics of human BBS. In addition to PRA, the dogs showed a spectrum of clinical and morphological signs similar to primary and secondary characteristics of human BBS patients, such as obesity, renal anomalies, sperm defects, and anosmia. We used Oxford Nanopore long-read cDNA sequencing to characterize retinal full-length TTC8 transcripts in affected and non-affected dogs, the results of which suggest that three isoforms are transcribed in the retina, and the 1 bp deletion is a loss-of-function mutation, resulting in a canine form of Bardet-Biedl syndrome with heterogeneous clinical signs.


Differential Diagnosis between Marfan Syndrome and Loeys-Dietz Syndrome Type 4: A Novel Chromosomal Deletion Covering TGFB2.

  • Stefano Nistri‎ et al.
  • Genes‎
  • 2021‎

Marfan syndrome (MFS) and Loeys-Dietz syndrome type 4 (LDS4) are two hereditary connective tissue disorders. MFS displays ectopia lentis as a distinguishing, characterising feature, and thoracic aortic ectasia, aneurysm, dissection, and systemic features as manifestations overlapping with LDS4. LDS4 is characterised by the presence of hypertelorism, cleft palate and/or bifid uvula, with possible ectasia or aneurysms in other arteries. The variable age of onset of clinical manifestations makes clinical diagnosis more difficult. In this study, we report the case of a patient with Marfan syndrome diagnosed at our centre at the age of 33 on the basis of typical clinical manifestations of this syndrome. At the age of 38, the appearance of ectasia of the left common iliac artery and tortuosity of the iliac arteries suggested the presence of LDS4. Next Generation Sequencing (NGS) analysis, followed by Array-CGH, allowed the detection of a novel chromosomal deletion including the entire TGFB2 gene, confirming not only the clinical suspicion of LDS4, but also the clinical phenotype associated with the haploinsufficiency mechanism, which is, in turn, associated with the deletion of the entire gene. The same mutation was detected in the two young sons. This emblematic case confirms that we must be very careful in the differential diagnosis of these two pathologies, especially before the age of 40, and that, in young subjects suspected to be affected by MFS in particular, we must verify the diagnosis, extending genetic analysis, when necessary, to the search for chromosomal alterations. Recently, ectopia lentis has been reported in a patient with LDS4, confirming the tight overlap between the two syndromes. An accurate revision of the clinical parameters both characterising and overlapping the two pathologies is highly desirable.


Sequence Analysis of Six Candidate Genes in Miniature Schnauzers with Primary Hypertriglyceridemia.

  • Nicole M Tate‎ et al.
  • Genes‎
  • 2024‎

Miniature Schnauzers are predisposed to primary hypertriglyceridemia (HTG). In this study, we performed whole genome sequencing (WGS) of eight Miniature Schnauzers with primary HTG and screened for risk variants in six HTG candidate genes: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Variants were filtered to identify those present in ≥2 Miniature Schnauzers with primary HTG and uncommon (<10% allele frequency) in a WGS variant database including 613 dogs from 61 other breeds. Three variants passed filtering: an APOE TATA box deletion, an LMF1 intronic SNP, and a GPIHBP1 missense variant. The APOE and GPIHBP1 variants were genotyped in a cohort of 108 Miniature Schnauzers, including 68 with primary HTG and 40 controls. A multivariable regression model, including age and sex, did not identify an effect of APOE (estimate = 0.18, std. error = 0.14; p = 0.20) or GPIHBP1 genotypes (estimate = -0.26, std. error = 0.42; p = 0.54) on triglyceride concentration. In conclusion, we did not identify a monogenic cause for primary HTG in Miniature Schnauzers in the six genes evaluated. However, if HTG in Miniature Schnauzers is a complex disease resulting from the cumulative effects of multiple variants and environment, the identified variants cannot be ruled out as contributing factors.


RNA Sequencing Reveals Specific TranscriptomicSignatures Distinguishing Effects of the [SWI⁺] Prion and SWI1 Deletion in Yeast Saccharomyces cerevisiae.

  • Yury V Malovichko‎ et al.
  • Genes‎
  • 2019‎

Prions are infectious, self-perpetuating protein conformers. In mammals, pathological aggregation of the prion protein causes incurable neurodegenerative disorders, while in yeast Saccharomyces cerevisiae, prion formation may be neutral or even beneficial. According to the prevailing contemporary point of view, prion formation is considered to be a functional inactivation of the corresponding protein whose conformational state shifts from the functional monomeric one to the infectious aggregated one. The Swi1 protein forms the [SWI⁺] prion and belongs to the nucleosome remodeler complex SWI/SNF controlling the expression of a significant part of the yeast genome. In this work, we performed RNA sequencing of isogenic S. cerevisiae strains grown on the media containing galactose as the sole carbon source. These strains bore the [SWI⁺] prion or had its structural gene SWI1 deleted. The comparative analysis showed that [SWI⁺] affects genome expression significantly weaker as compared to the SWI1 deletion. Moreover, in contrast to [SWI⁺], the SWI1 deletion causes the general inhibition of translation-related genes expression and chromosome I disomy. At the same time, the [SWI⁺] prion exhibits a specific pattern of modulation of the metabolic pathways and some biological processes and functions, as well as the expression of several genes. Thus, the [SWI⁺] prion only partially corresponds to the loss-of-function of SWI1 and demonstrates several gain-of-function traits.


Contribution of Mitochondrial DNA Heteroplasmy to the Congenital Cardiac and Palatal Phenotypic Variability in Maternally Transmitted 22q11.2 Deletion Syndrome.

  • Boris Rebolledo-Jaramillo‎ et al.
  • Genes‎
  • 2021‎

Congenital heart disease (CHD) and palatal anomalies (PA), are among the most common characteristics of 22q11.2 deletion syndrome (22q11.2DS), but they show incomplete penetrance, suggesting the presence of additional factors. The 22q11.2 deleted region contains nuclear encoded mitochondrial genes, and since mitochondrial function is critical during development, we hypothesized that changes in the mitochondrial DNA (mtDNA) could be involved in the intrafamilial variability of CHD and PA in cases of maternally inherited 22q11.2DS. To investigate this, we studied the transmission of heteroplasmic mtDNA alleles in seventeen phenotypically concordant and discordant mother-offspring 22q11.2DS pairs. We sequenced their mtDNA and identified 26 heteroplasmic variants at >1% frequency, representing 18 transmissions. The median allele frequency change between a mother and her child was twice as much, with a wider distribution range, in PA discordant pairs, p-value = 0.039 (permutation test, 11 concordant vs. 7 discordant variants), but not in CHD discordant pairs, p-value = 0.441 (9 vs. 9). Only the variant m.9507T>C was considered to be pathogenic, but it was unrelated to the structural phenotypes. Our study is novel, yet our results are not consistent with mtDNA variation contributing to PA or CHD in 22q11.2DS. Larger cohorts and additional factors should be considered moving forward.


Cytogenetic and Array-CGH Characterization of a Simple Case of Reciprocal t(3;10) Translocation Reveals a Hidden Deletion at 5q12.

  • Angelo Cellamare‎ et al.
  • Genes‎
  • 2021‎

Chromosome deletions, including band 5q12, have rarely been reported and have been associated with a wide range of clinical manifestations, such as postnatal growth retardation, intellectual disability, hyperactivity, nonspecific ocular defects, facial dysmorphism, and epilepsy. In this study, we describe for the first time a child with growth retardation in which we identified a balanced t(3;10) translocation by conventional cytogenetic analysis in addition to an 8.6 Mb 5q12 deletion through array-CGH. Our results show that the phenotypic abnormalities of a case that had been interpreted as "balanced" by conventional cytogenetics are mainly due to a cryptic deletion, highlighting the need for molecular investigation in subjects with an abnormal phenotype before assuming the cause is an apparently simple cytogenetic rearrangement. Finally, we identify PDE4D and PIK3R1 genes as the two major candidates responsible for the clinical features expressed in our patient.


A Deletion in GDF7 is Associated with a Heritable Forebrain Commissural Malformation Concurrent with Ventriculomegaly and Interhemispheric Cysts in Cats.

  • Yoshihiko Yu‎ et al.
  • Genes‎
  • 2020‎

An inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation, concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test and a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats, by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasized the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.


Structure and Sequence of the Sex Determining Locus in Two Wild Populations of Nile Tilapia.

  • Cécile Triay‎ et al.
  • Genes‎
  • 2020‎

In domesticated strains of the Nile tilapia, phenotypic sex has been linked to genetic variants on linkage groups 1, 20 and 23. This diversity of sex-loci might reflect a naturally polymorphic sex determination system in Nile tilapia, or it might be an artefact arising from the process of domestication. Here, we searched for sex-determiners in wild populations from Kpandu, Lake Volta (Ghana-West Africa), and from Lake Koka (Ethiopia-East Africa) that have not been subjected to any genetic manipulation. We analysed lab-reared families using double-digest Restriction Associated DNA sequencing (ddRAD) and analysed wild-caught males and females with pooled whole-genome sequencing (WGS). Strong sex-linked signals were found on LG23 in both populations, and sex-linked signals with LG3 were observed in Kpandu samples. WGS uncovered blocks of high sequence coverage, suggesting the presence of B chromosomes. We confirmed the existence of a tandem amh duplication in LG23 in both populations and determined its breakpoints between the oaz1 and dot1l genes. We found two common deletions of ~5 kb in males and confirmed the presence of both amhY and amh∆Y genes. Males from Lake Koka lack both the previously reported 234 bp deletion and the 5 bp frameshift-insertion that creates a premature stop codon in amh∆Y.


A Homozygous Deletion of Exon 5 of KYNU Resulting from a Maternal Chromosome 2 Isodisomy (UPD2) Causes Catel-Manzke-Syndrome/VCRL Syndrome.

  • Isabel Schüle‎ et al.
  • Genes‎
  • 2021‎

Vertebral, Cardiac, Renal and Limb Defect Syndrome (VCRL), is a very rare congenital malformation syndrome. Pathogenic variants in HAAO (3-Hydroxyanthranilate 3,4-dioxygenase), NADSYN1 (NAD+ Synthetase-1) and KYNU (Kynureninase) have been identified in a handful of affected individuals. All three genes encode for enzymes essential for the NAD+ de novo synthesis pathway. Using Trio-Exome analysis and CGH array analysis in combination with long range PCR, we have identified a novel homozygous copy number variant (CNV) encompassing exon 5 of KYNU in an individual presenting with overlapping features of VCRL and Catel-Manzke Syndrome. Interestingly, only the mother, not the father carried the small deletion in a heterozygous state. High-resolution SNP array analysis subsequently delineated a maternal isodisomy of chromosome 2 (UPD2). Increased xanthurenic acid excretion in the urine confirmed the genetic diagnosis. Our findings confirm the clinical, genetic and metabolic phenotype of VCRL1, adding a novel functionally tested disease allele. We also describe the first patient with NAD+ deficiency disorder resulting from a UPD. Furthermore, we provide a comprehensive review of the current literature covering the genetic basis and pathomechanisms for VCRL and Catel-Manzke Syndrome, including possible phenotype/genotype correlations as well as genetic causes of hypoplastic left heart syndrome.


Whole Exome Sequence Analysis Provides Novel Insights into the Genetic Framework of Childhood-Onset Pulmonary Arterial Hypertension.

  • Simone M Gelinas‎ et al.
  • Genes‎
  • 2020‎

Pulmonary arterial hypertension (PAH) describes a rare, progressive vascular disease caused by the obstruction of pulmonary arterioles, typically resulting in right heart failure. Whilst PAH most often manifests in adulthood, paediatric disease is considered to be a distinct entity with increased morbidity and often an unexplained resistance to current therapies. Recent genetic studies have substantially increased our understanding of PAH pathogenesis, providing opportunities for molecular diagnosis and presymptomatic genetic testing in families. However, the genetic architecture of childhood-onset PAH remains relatively poorly characterised. We sought to investigate a previously unsolved paediatric cohort (n = 18) using whole exome sequencing to improve the molecular diagnosis of childhood-onset PAH. Through a targeted investigation of 26 candidate genes, we applied a rigorous variant filtering methodology to enrich for rare, likely pathogenic variants. This analysis led to the detection of novel PAH risk alleles in five genes, including the first identification of a heterozygous ATP13A3 mutation in childhood-onset disease. In addition, we provide the first independent validation of BMP10 and PDGFD as genetic risk factors for PAH. These data provide a molecular diagnosis in 28% of paediatric cases, reflecting the increased genetic burden in childhood-onset disease and highlighting the importance of next-generation sequencing approaches to diagnostic surveillance.


Characterization of A Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as A Risk Factor for Disorders of Sex Development and Reproduction.

  • Sharmila Ghosh‎ et al.
  • Genes‎
  • 2020‎

Disorders of sex development (DSD) and reproduction are not uncommon among horses, though knowledge about their molecular causes is sparse. Here we characterized a ~200 kb homozygous deletion in chromosome 29 at 29.7-29.9 Mb. The region contains AKR1C genes which function as ketosteroid reductases in steroid hormone biosynthesis, including androgens and estrogens. Mutations in AKR1C genes are associated with human DSDs. Deletion boundaries, sequence properties and gene content were studied by PCR and whole genome sequencing of select deletion homozygotes and control animals. Deletion analysis by PCR in 940 horses, including 622 with DSDs and reproductive problems and 318 phenotypically normal controls, detected 67 deletion homozygotes of which 79% were developmentally or reproductively abnormal. Altogether, 8-9% of all abnormal horses were homozygous for the deletion, with the highest incidence (9.4%) among cryptorchids. The deletion was found in ~4% of our phenotypically normal cohort, ~1% of global warmblood horses and ponies, and ~7% of draught breeds of general horse population as retrieved from published data. Based on the abnormal phenotype of the carriers, the functionally relevant gene content, and the low incidence in general population, we consider the deletion in chromosome 29 as a risk factor for equine DSDs and reproductive disorders.


Whole Exome Sequencing Reveals a Novel AUTS2 In-Frame Deletion in a Boy with Global Developmental Delay, Absent Speech, Dysmorphic Features, and Cerebral Anomalies.

  • Pietro Palumbo‎ et al.
  • Genes‎
  • 2021‎

Neurodevelopmental disorders (NDDs) are a group of highly prevalent, clinically and genetically heterogeneous pediatric disorders comprising, according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-V), intellectual disability, developmental delay, autism spectrum disorders, and other neurological and cognitive disorders manifesting in the developmental age. To date, more than 1000 genes have been implicated in the etiopathogenesis of NNDs. Among them, AUTS2 (OMIM # 607270) encodes a protein involved in neural migration and neuritogenesis, and causes NNDs with different molecular mechanisms including copy number variations, single or multiple exonic deletion and single nucleotide variants. We describes a 9-year-old boy with global developmental delay, absent speech, minor craniofacial anomalies, hypoplasia of the cerebellar vermis and thinning of the corpus callosum, resulted carrier of the de novo AUTS2 c.1603_1626del deletion at whole exome sequencing (WES) predicted to cause the loss of eight amino acids [p.(His535_Thr542del)]. Notably, our patient is the first reported so far in medical literature carrying an in-frame deletion and the first in which absent language, hypoplasia of the cerebellar vermis and thinning of the corpus callosum has been observed thus useful to expand the molecular spectrum of AUTS2 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.


Root-Specific Expression of a Jacalin Lectin Family Protein Gene Requires a Transposable Element Sequence in the Promoter.

  • Qiong Wu‎ et al.
  • Genes‎
  • 2018‎

Transposable elements (TEs) are widespread in the plant genome and can impact on the expression of neighbouring genes. Our previous studies have identified a number of DNA demethylase-regulated defence-related genes that contain TE sequences in the promoter and show tissue-specific expression in Arabidopsis. In this study we investigated the role of the promoter TE insertions in the root-specific expression of a DNA demethylase-regulated gene, AT5G38550, encoding a Jacalin lectin family protein. Using a promoter:GUS fusion reporter gene approach, we first demonstrated that the full-length promoter fragment, carrying four TE sequences, contained the essential regulatory information required for root-specific expression and DNA demethylase regulation in Arabidopsis. By successive deletion of the four TE sequences, we showed that one of the four TE insertions, a 201-bp TE fragment of the hAT DNA transposon family, was required for root-specific expression: Deletion of this TE, but not the first two TE sequences, converted the root-specific expression pattern to a constitutive expression pattern in Arabidopsis plants. Our study provides an example indicating an important role of TE insertions in tissue-specific expression of plant defence-related genes.


Genomic Diversity of Listeria monocytogenes Isolated from Clinical and Non-Clinical Samples in Chile.

  • Viviana Toledo‎ et al.
  • Genes‎
  • 2018‎

Listeria monocytogenes is the causative agent of listeriosis, which is an uncommon but severe infection associated with high mortality rates in humans especially in high-risk groups. This bacterium survives a variety of stress conditions (e.g., high osmolality, low pH), which allows it to colonize different niches especially niches found in food processing environments. Additionally, a considerable heterogeneity in pathogenic potential has been observed in different strains. In this study, 38 isolates of L. monocytogenes collected in Chile from clinical samples (n = 22) and non-clinical samples (n = 16) were analyzed using whole genome sequencing (WGS) to determine their genomic diversity. A core genome Single Nucleotide Polymorphism (SNP) tree using 55 additional L. monocytogenes accessions classified the Chilean isolates in lineages I (n = 25) and II (n = 13). In silico, Multi-locus sequence typing (MLST) differentiated the isolates into 13 sequence types (ST) in which the most common were ST1 (15 isolates) and ST9 (6 isolates) and represented 55% of the isolates. Genomic elements associated with virulence (i.e., LIPI-1, LIPI-3, inlA, inlB, inlC, inlG, inlH, inlD, inlE, inlK, inlF, and inlJ) and stress survival (i.e., stress survival islet 1 and stress survival islet 2) were unevenly distributed among clinical and non-clinical isolates. In addition, one novel inlA premature stop codon (PMSC) was detected. Comparative analysis of L. monocytogenes circulating in Chile revealed the presence of globally distributed sequence types along with differences among the isolates analyzed at a genomic level specifically associated with virulence and stress survival.


Population Genetic and Functional Analysis of a cis-Regulatory Polymorphism in the DrosophilamelanogasterMetallothionein A gene.

  • Timothy J S Ramnarine‎ et al.
  • Genes‎
  • 2019‎

Although gene expression can vary extensively within and among populations, the genetic basis of this variation and the evolutionary forces that maintain it are largely unknown. In Drosophilamelanogaster, a 49-bp insertion/deletion (indel) polymorphism in the Metallothionein A (MtnA) gene is associated with variation in MtnA expression and oxidative stress tolerance. To better understand the functional and evolutionary significance of this polymorphism, we investigated it in several worldwide populations. In a German population, the deletion was present at a high and stable frequency over multiple seasons and years, and was associated with increased MtnA expression. There was, however, no evidence that the polymorphism was maintained by overdominant, seasonally fluctuating, or sexually antagonistic selection. The deletion was rare in a population from the species' ancestral range in sub-Saharan Africa and is likely the result of non-African admixture, suggesting that it spread to high frequency following the species' out-of-Africa expansion. Using data from a North American population, we found that the deletion was associated with MtnA expression and tolerance to oxidative stress induced by menadione sodium bisulfite. Our results are consistent with the deletion being selectively favored in temperate populations due to the increased MtnA expression and oxidative stress tolerance that it confers.


Genotyping of the Major SARS-CoV-2 Clade by Short-Amplicon High-Resolution Melting (SA-HRM) Analysis.

  • Hector Diaz-Garcia‎ et al.
  • Genes‎
  • 2021‎

The genome of the SARS-CoV-2 virus, the causal agent of the COVID-19 pandemic, has diverged due to multiple mutations since its emergence as a human pathogen in December 2019. Some mutations have defined several SARS-CoV-2 clades that seem to behave differently in terms of regional distribution and other biological features. Next-generation sequencing (NGS) approaches are used to classify the sequence variants in viruses from individual human patients. However, the cost and relative scarcity of NGS equipment and expertise in developing countries prevent studies aimed to associate specific clades and variants to clinical features and outcomes in such territories. As of March 2021, the GR clade and its derivatives, including the B.1.1.7 and B.1.1.28 variants, predominate worldwide. We implemented the post-PCR small-amplicon high-resolution melting analysis to genotype SARS-CoV-2 viruses isolated from the saliva of individual patients. This procedure was able to clearly distinguish two groups of samples of SARS-CoV-2-positive samples predicted, according to their melting profiles, to contain GR and non-GR viruses. This grouping of the samples was validated by means of amplification-refractory mutation system (ARMS) assay as well as Sanger sequencing.


Mitochondrial DNA Variation and Selfish Propagation Following Experimental Bottlenecking in Two Distantly Related Caenorhabditis briggsae Isolates.

  • Josiah T Wagner‎ et al.
  • Genes‎
  • 2020‎

Understanding mitochondrial DNA (mtDNA) evolution and inheritance has broad implications for animal speciation and human disease models. However, few natural models exist that can simultaneously represent mtDNA transmission bias, mutation, and copy number variation. Certain isolates of the nematode Caenorhabditis briggsae harbor large, naturally-occurring mtDNA deletions of several hundred basepairs affecting the NADH dehydrogenase subunit 5 (nduo-5) gene that can be functionally detrimental. These deletion variants can behave as selfish DNA elements under genetic drift conditions, but whether all of these large deletion variants are transmitted in the same preferential manner remains unclear. In addition, the degree to which transgenerational mtDNA evolution profiles are shared between isolates that differ in their propensity to accumulate the nduo-5 deletion is also unclear. We address these knowledge gaps by experimentally bottlenecking two isolates of C. briggsae with different nduo-5 deletion frequencies for up to 50 generations and performing total DNA sequencing to identify mtDNA variation. We observed multiple mutation profile differences and similarities between C. briggsae isolates, a potentially species-specific pattern of copy number dysregulation, and some evidence for genetic hitchhiking in the deletion-bearing isolate. Our results further support C. briggsae as a practical model for characterizing naturally-occurring mtgenome variation and contribute to the understanding of how mtgenome variation persists in animal populations and how it presents in mitochondrial disease states.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: