Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 414 papers

A 3.4-kb Copy-Number Deletion near EPAS1 Is Significantly Enriched in High-Altitude Tibetans but Absent from the Denisovan Sequence.

  • Haiyi Lou‎ et al.
  • American journal of human genetics‎
  • 2015‎

Tibetan high-altitude adaptation (HAA) has been studied extensively, and many candidate genes have been reported. Subsequent efforts targeting HAA functional variants, however, have not been that successful (e.g., no functional variant has been suggested for the top candidate HAA gene, EPAS1). With WinXPCNVer, a method developed in this study, we detected in microarray data a Tibetan-enriched deletion (TED) carried by 90% of Tibetans; 50% were homozygous for the deletion, whereas only 3% carried the TED and 0% carried the homozygous deletion in 2,792 worldwide samples (p < 10(-15)). We employed long PCR and Sanger sequencing technologies to determine the exact copy number and breakpoints of the TED in 70 additional Tibetan and 182 diverse samples. The TED had identical boundaries (chr2: 46,694,276-46,697,683; hg19) and was 80 kb downstream of EPAS1. Notably, the TED was in strong linkage disequilibrium (LD; r(2) = 0.8) with EPAS1 variants associated with reduced blood concentrations of hemoglobin. It was also in complete LD with the 5-SNP motif, which was suspected to be introgressed from Denisovans, but the deletion itself was absent from the Denisovan sequence. Correspondingly, we detected that footprints of positive selection for the TED occurred 12,803 (95% confidence interval = 12,075-14,725) years ago. We further whole-genome deep sequenced (>60×) seven Tibetans and verified the TED but failed to identify any other copy-number variations with comparable patterns, giving this TED top priority for further study. We speculate that the specific patterns of the TED resulted from its own functionality in HAA of Tibetans or LD with a functional variant of EPAS1.


The haptoglobin-gene deletion responsible for anhaptoglobinemia.

  • Y Koda‎ et al.
  • American journal of human genetics‎
  • 1998‎

We have found an allelic deletion of the haptoglobin (Hp) gene from an individual with anhaptoglobinemia. The Hp gene cluster consists of coding regions of the alpha chain and beta chain of the haptoglobin gene (Hp) and of the alpha chain and beta chain of the haptoglobin-related gene (Hpr), in tandem from the 5' side. Southern blot and PCR analyses have indicated that the individual with anhaptoglobinemia was homozygous for the gene deletion and that the gene deletion was included at least from the promoter region of Hp to Hpr alpha but not to Hpr beta (Hpdel). In addition, we found seven individuals with hypohaptoglobinemia in three families, and the genotypes of six of the seven individuals were found to be Hp2/Hpdel. The phenotypes and genotypes in one of these three families showed the father to be hypohaptoglobinemic (Hp2) and Hp2/Hpdel, the mother to be Hp2-1 and Hp1/Hp2, one of the two children to be hypohaptoglobinemic (Hp2) and Hp2/Hpdel, and the other child to be Hp1 and Hp1/Hpdel, showing an anomalous inheritance of Hp phenotypes in the child with Hp1. The Hp2/Hpdel individuals had an extremely low level of Hp (mean+/-SD = 0.049+/-0. 043 mg/ml; n=6), compared with the level (1.64+/-1.07 mg/ml) obtained from 52 healthy volunteers having phenotype Hp2, whereas the serum Hp level of an individual with Hp1/Hpdel was 0.50 mg/ml, which was approximately half the level of Hp in control sera from the Hp1 phenotype (1.26+/-0.33 mg/ml; n=9), showing a gene-dosage effect. The other allele (Hp2) of individuals with Hp2/Hpdel was found to have, in all exons, no mutation, by DNA sequencing. On the basis of the present study, the mechanism of anhaptoglobinemia and the mechanism of anomalous inheritance of Hp phenotypes were well explained. However, the mechanism of hypohaptoglobinemia remains unknown.


Molecular analysis of a deletion hotspot in the NRXN1 region reveals the involvement of short inverted repeats in deletion CNVs.

  • Xiaoli Chen‎ et al.
  • American journal of human genetics‎
  • 2013‎

NRXN1 microdeletions occur at a relatively high frequency and confer increased risk for neurodevelopmental and neurobehavioral abnormalities. The mechanism that makes NRXN1 a deletion hotspot is unknown. Here, we identified deletions of the NRXN1 region in affected cohorts, confirming a strong association with the autism spectrum and other neurodevelopmental disorders. Interestingly, deletions in both affected and control individuals were clustered in the 5' portion of NRXN1 and its immediate upstream region. To explore the mechanism of deletion, we mapped and analyzed the breakpoints of 32 deletions. At the deletion breakpoints, frequent microhomology (68.8%, 2-19 bp) suggested predominant mechanisms of DNA replication error and/or microhomology-mediated end-joining. Long terminal repeat (LTR) elements, unique non-B-DNA structures, and MEME-defined sequence motifs were significantly enriched, but Alu and LINE sequences were not. Importantly, small-size inverted repeats (minus self chains, minus sequence motifs, and partial complementary sequences) were significantly overrepresented in the vicinity of NRXN1 region deletion breakpoints, suggesting that, although they are not interrupted by the deletion process, such inverted repeats can predispose a region to genomic instability by mediating single-strand DNA looping via the annealing of partially reverse complementary strands and the promoting of DNA replication fork stalling and DNA replication error. Our observations highlight the potential importance of inverted repeats of variable sizes in generating a rearrangement hotspot in which individual breakpoints are not recurrent. Mechanisms that involve short inverted repeats in initiating deletion may also apply to other deletion hotspots in the human genome.


Deletion and point mutations of PTHLH cause brachydactyly type E.

  • Eva Klopocki‎ et al.
  • American journal of human genetics‎
  • 2010‎

Autosomal-dominant brachydactyly type E (BDE) is a congenital limb malformation characterized by small hands and feet predominantly as a result of shortened metacarpals and metatarsals. In a large pedigree with BDE, short stature, and learning disabilities, we detected a microdeletion of approximately 900 kb encompassing PTHLH, the gene coding for parathyroid hormone related protein (PTHRP). PTHRP is known to regulate the balance between chondrocyte proliferation and the onset of hypertrophic differentiation during endochondral bone development. Inactivation of Pthrp in mice results in short-limbed dwarfism because of premature differentiation of chondrocyte. On the basis of our initial finding, we tested further individuals with BDE and short stature for mutations in PTHLH. We identified two missense (L44P and L60P), a nonstop (X178WextX( *)54), and a nonsense (K120X) mutation. The missense mutation L60P was tested in chicken micromass culture with the replication-competent avian sarcoma leukosis virus retroviral expression system and was shown to result in a loss of function. Thus, loss-of-function mutations in PTHLH cause BDE with short stature.


Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot.

  • James R Howe‎ et al.
  • American journal of human genetics‎
  • 2002‎

Juvenile polyposis (JP) is an autosomal dominant syndrome in which affected patients develop upper- and/or lower-gastrointestinal (GI) polyps. A subset of families with JP have germline mutations in the SMAD4 (MADH4) gene and are at increased risk of GI cancers. To date, six families with JP have been described as having the same SMAD4 deletion (1244-1247delAGAC). The objective of the present study is to determine whether this deletion is a common ancestral mutation or a mutational hotspot. DNA from members of four families with JP, from Iowa, Mississippi, Texas, and Finland, that had this 4-bp deletion was used to genotype 15 simple tandem repeat polymorphism (STRP) markers flanking the SMAD4 gene, including 2 new STRPs within 6.3 and 70.9 kb of the deletion. Haplotypes cosegregating with JP in each family were constructed, and the distances of the closest markers were determined from the draft sequence of the human genome. No common haplotype was observed in these four families with JP. A 14-bp region containing the deletion had four direct repeats and one inverted repeat. Because no common ancestor was suggested by haplotype analysis and the sequence flanking the deletion contains repeats frequently associated with microdeletions, this common SMAD4 deletion in JP most likely represents a mutational hotspot.


Histone Modifier Genes Alter Conotruncal Heart Phenotypes in 22q11.2 Deletion Syndrome.

  • Tingwei Guo‎ et al.
  • American journal of human genetics‎
  • 2015‎

We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome (22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control subjects (p = 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we investigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcription (Fisher exact p = 0.0004, permutations, p = 0.0003, OR = 5.16); however, rdSNVs in control subjects were not enriched. This implicates histone modification genes as influencing risk for CHD in presence of the deletion.


Large Intragenic Deletion in DSTYK Underlies Autosomal-Recessive Complicated Spastic Paraparesis, SPG23.

  • John Y W Lee‎ et al.
  • American journal of human genetics‎
  • 2017‎

SPG23 is an autosomal-recessive neurodegenerative subtype of lower limb spastic paraparesis with additional diffuse skin and hair dyspigmentation at birth followed by further patchy pigment loss during childhood. Previously, genome-wide linkage in an Arab-Israeli pedigree mapped the gene to an approximately 25 cM locus on chromosome 1q24-q32. By using whole-exome sequencing in a further Palestinian-Jordanian SPG23 pedigree, we identified a complex homozygous 4-kb deletion/20-bp insertion in DSTYK (dual serine-threonine and tyrosine protein kinase) in all four affected family members. DSTYK is located within the established linkage region and we also found the same mutation in the previously reported pedigree and another Israeli pedigree (total of ten affected individuals from three different families). The mutation removes the last two exons and part of the 3' UTR of DSTYK. Skin biopsies revealed reduced DSTYK protein levels along with focal loss of melanocytes. Ultrastructurally, swollen mitochondria and cytoplasmic vacuoles were also noted in remaining melanocytes and some keratinocytes and fibroblasts. Cultured keratinocytes and fibroblasts from an affected individual, as well as knockdown of Dstyk in mouse melanocytes, keratinocytes, and fibroblasts, were associated with increased cell death after ultraviolet irradiation. Keratinocytes from an affected individual showed loss of kinase activity upon stimulation with fibroblast growth factor. Previously, dominant mutations in DSTYK were implicated in congenital urological developmental disorders, but our study identifies different phenotypic consequences for a recurrent autosomal-recessive deletion mutation in revealing the genetic basis of SPG23.


Mesomelia-synostoses syndrome results from deletion of SULF1 and SLCO5A1 genes at 8q13.

  • Bertrand Isidor‎ et al.
  • American journal of human genetics‎
  • 2010‎

Mesomelia-synostoses syndrome (MSS) or mesomelic dysplasia with acral synostoses Verloes-David-Pfeiffer type is a rare autosomal-dominant disorder characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations. So far, five patients in four unrelated families have been reported worldwide with MMS. By using whole-genome oligonucleotide array CGH, we have identified an interstitial deletion at 8q13 in all patients. The deletions vary from 582 Kb to 738 Kb in size, but invariably encompass only two genes: SULF1, encoding the heparan sulfate 6-O-endosulfatase 1, and SLCO5A1, encoding the solute carrier organic anion transporter family member 5A1. SULF1 acts as a regulator of numerous growth factors in skeletal embryonic development whereas the function of SLCO5A1 is yet unknown. Breakpoint sequence analyses performed in two families showed nonrecurrent deletions. Real-time quantitative RT-PCR analysis showed the highest levels of SULF1 transcripts in human osteoblasts and cartilage whereas SLCO5A1 was highly expressed in human fetal and adult brain and heart. Our results strongly suggest that haploinsufficiency of SULF1 contributes to this mesomelic chondrodysplasia, highlighting the critical role of endosulfatase in human skeletal development. Codeletion of SULF1 and SLCO5A1--which does not result from a low-copy repeats (LCRs)-mediated recombination event in at least two families--was found in all patients, so we suggest that haploinsufficiency of SULF1 combined with haploinsufficiency of SLCO5A1 (or the altered expression of a neighboring gene through position effect) could be necessary in the pathogenesis of MSS.


DNA sequence variation in a 3.7-kb noncoding sequence 5' of the CYP1A2 gene: implications for human population history and natural selection.

  • S P Wooding‎ et al.
  • American journal of human genetics‎
  • 2002‎

CYP1A2 is a cytochrome P450 gene that is involved in human physiological responses to a variety of drugs and toxins. To investigate the role of population history and natural selection in shaping genetic diversity in CYP1A2, we sequenced a 3.7-kb region 5' from CYP1A2 in a diverse collection of 113 individuals from three major continental regions of the Old World (Africa, Asia, and Europe). We also examined sequences in the 90-member National Institutes of Health DNA Polymorphism Discovery Resource (PDR). Eighteen single-nucleotide polymorphisms (SNPs) were found. Most of the high-frequency SNPs found in the Old World sample were also found in the PDR sample. However, six SNPs were detected in the Old World sample but not in the PDR sample, and two SNPs found in the PDR sample were not found in the Old World sample. Most pairs of SNPs were in complete linkage disequilibrium with one another, and there was no indication of a decline of disequilibrium with physical distance in this region. The average +/- SD nucleotide diversity in the Old World sample was 0.00043+/-0.00026. The African population had the highest level of nucleotide diversity and the lowest level of linkage disequilibrium. Two distinct haplotype clusters with broadly overlapping geographical distributions were present. Of the 17 haplotypes found in the Old World sample, 12 were found in the African sample, 8 were found in Indians, 5 were found in non-Indian Asians, and 5 were found in Europeans. Haplotypes found outside Africa were mostly a subset of those found within Africa. These patterns are all consistent with an African origin of modern humans. Seven SNPs were singletons, and the site-frequency spectrum showed a significant departure from neutral expectations, suggesting population expansion and/or natural selection. Comparison with outgroup species showed that four derived SNPs have achieved high (>0.90) frequencies in human populations, a trend consistent with the action of positive natural selection. These patterns have a number of implications for disease-association studies in CYP1A2 and other genes.


Symmetrical Dose-Dependent DNA-Methylation Profiles in Children with Deletion or Duplication of 7q11.23.

  • Emma Strong‎ et al.
  • American journal of human genetics‎
  • 2015‎

Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.


Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23-q21.11.

  • Christian R Marshall‎ et al.
  • American journal of human genetics‎
  • 2008‎

Infantile spasms (IS) is the most severe and common form of epilepsy occurring in the first year of life. At least half of IS cases are idiopathic in origin, with others presumed to arise because of brain insult or malformation. Here, we identify a locus for IS by high-resolution mapping of 7q11.23-q21.1 interstitial deletions in patients. The breakpoints delineate a 500 kb interval within the MAGI2 gene (1.4 Mb in size) that is hemizygously disrupted in 15 of 16 participants with IS or childhood epilepsy, but remains intact in 11 of 12 participants with no seizure history. MAGI2 encodes the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 that interacts with Stargazin, a protein also associated with epilepsy in the stargazer mouse.


Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers.

  • Entela Bua‎ et al.
  • American journal of human genetics‎
  • 2006‎

Skeletal muscle-mass loss with age has severe health consequences, yet the molecular basis of the loss remains obscure. Although mitochondrial DNA (mtDNA)-deletion mutations have been shown to accumulate with age, for these aberrant genomes to be physiologically relevant, they must accumulate to high levels intracellularly and be present in a significant number of cells. We examined mtDNA-deletion mutations in vastus lateralis (VL) muscle of human subjects aged 49-93 years, using both histologic and polymerase-chain-reaction (PCR) analyses, to determine the physiological and genomic integrity of mitochondria in aging human muscle. The number of VL muscle fibers exhibiting mitochondrial electron-transport-system (ETS) abnormalities increased from an estimated 6% at age 49 years to 31% at age 92 years. We analyzed the mitochondrial genotype of 48 single ETS-abnormal, cytochrome c oxidase-negative/succinate dehydrogenase-hyperreactive (COX-/SDH++) fibers from normal aging human subjects and identified mtDNA-deletion mutations in all abnormal fibers. Deletion mutations were clonal within a fiber and concomitant to the COX-/SDH++ region. Quantitative PCR analysis of wild-type and deletion-containing mtDNA genomes within ETS-abnormal regions of single fibers demonstrated that these deletion mutations accumulate to detrimental levels (>90% of the total mtDNA).


A large AZFc deletion removes DAZ3/DAZ4 and nearby genes from men in Y haplogroup N.

  • S Fernandes‎ et al.
  • American journal of human genetics‎
  • 2004‎

Deletion of the entire AZFc locus on the human Y chromosome leads to male infertility. The functional roles of the individual gene families mapped to AZFc are, however, still poorly understood, since the analysis of the region is complicated by its repeated structure. We have therefore used single-nucleotide variants (SNVs) across approximately 3 Mb of the AZFc sequence to identify 17 AZFc haplotypes and have examined them for deletion of individual AZFc gene copies. We found five individuals who lacked SNVs from a large segment of DNA containing the DAZ3/DAZ4 and BPY2.2/BPY2.3 gene doublets in distal AZFc. Southern blot analyses showed that the lack of these SNVs was due to deletion of the underlying DNA segment. Typing 118 binary Y markers showed that all five individuals belonged to Y haplogroup N, and 15 of 15 independently ascertained men in haplogroup N carried a similar deletion. Haplogroup N is known to be common and widespread in Europe and Asia, and there is no indication of reduced fertility in men with this Y chromosome. We therefore conclude that a common variant of the human Y chromosome lacks the DAZ3/DAZ4 and BPY2.2/BPY2.3 doublets in distal AZFc and thus that these genes cannot be required for male fertility; the gene content of the AZFc locus is likely to be genetically redundant. Furthermore, the observed deletions cannot be derived from the GenBank reference sequence by a single recombination event; an origin by homologous recombination from such a sequence organization must be preceded by an inversion event. These data confirm the expectation that the human Y chromosome sequence and gene complement may differ substantially between individuals and more variations are to be expected in different Y chromosomal haplogroups.


Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome.

  • Thomas Fernandez‎ et al.
  • American journal of human genetics‎
  • 2004‎

3p deletion syndrome is a rare contiguous-gene disorder involving the loss of the telomeric portion of the short arm of chromosome 3 and characterized by developmental delay, growth retardation, and dysmorphic features. All reported cases have involved, at a minimum, the deletion of chromosome 3 telomeric to the band 3p25.3. Despite the presence of several genes in this region that are involved in neural development, a causative relationship between a particular transcript and the observed clinical manifestations has remained elusive. We have identified a child with characteristic physical features of 3p deletion syndrome and both verbal and nonverbal developmental delay who carries a de novo balanced translocation involving chromosomes 3 and 10. Fine mapping of this rearrangement demonstrates that the translocation breakpoint on chromosome 3 falls within the recently identified minimal candidate region for 3p deletion syndrome and disrupts the Contactin 4 (CNTN4) mRNA transcript at 3p26.2-3p26.3. This transcript (also known as BIG-2) is a member of the immunoglobulin super family of neuronal cell adhesion molecules involved in axon growth, guidance, and fasciculation in the central nervous system (CNS). Our results demonstrate the association of CNTN4 disruption with the 3p deletion syndrome phenotype and strongly suggest a causal relationship. These findings point to an important role for CNTN4 in normal and abnormal CNS development.


A 4-bp deletion in the Birt-Hogg-Dubé gene (FLCN) causes dominantly inherited spontaneous pneumothorax.

  • Jodie N Painter‎ et al.
  • American journal of human genetics‎
  • 2005‎

Primary spontaneous pneumothorax (PSP), a condition in which air enters the pleural space and causes secondary lung collapse, is mostly sporadic but also occurs in families. The precise etiology of PSP remains unknown, although it is associated with emphysemalike changes (bullae) in the lungs of almost all patients. We describe the results of a genetic study of a large Finnish family with a dominantly inherited tendency to PSP. A genomewide scan suggested linkage to chromosome 17p11. Screening of the best candidate gene, FLCN, revealed a 4-bp deletion in the first coding exon, which causes a frameshift that predicts a protein truncation 50 missense amino acids downstream. All carriers of the deletion had bullous lung lesions. Mutations in FLCN are also responsible for Birt-Hogg-Dubé (BHD) syndrome (a dominantly inherited disease characterized by benign skin tumors, PSP, and diverse types of renal cancer) and, rarely, are detected in sporadic renal and colorectal tumors. Unlike other FLCN mutations, the exon 4 deletion seems to be associated with bullous lung changes only with 100% penetrance. These results suggest that changes in FLCN may have an important role in the development of PSP and, more importantly, of emphysema, a chronic pulmonary disease that often leads to formation of bullous lesions and lowered pulmonary function. Additionally, given the strong association of PSP and BHD, the connection between these conditions needs to be investigated further, particularly in patients with familial PSP, who may be at a greater risk of developing renal cancer.


Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome.

  • Jaak Jaeken‎ et al.
  • American journal of human genetics‎
  • 2006‎

In 11 patients with a recessive congenital disorder, which we refer to as "the hypotonia-cystinuria syndrome," microdeletion of part of the SLC3A1 and PREPL genes on chromosome 2p21 was found. Patients present with generalized hypotonia at birth, nephrolithiasis, growth hormone deficiency, minor facial dysmorphism, and failure to thrive, followed by hyperphagia and rapid weight gain in late childhood. Since loss-of-function mutations in SLC3A1 are known to cause isolated cystinuria type I, and since the expression of the flanking genes, C2orf34 and PPM1B, was normal, the extended phenotype can be attributed to the deletion of PREPL. PREPL is localized in the cytosol and shows homology with prolyl endopeptidase and oligopeptidase B. Substitution of the predicted catalytic residues (Ser470, Asp556, and His601) by alanines resulted in loss of reactivity with a serine hydrolase-specific probe. In sharp contrast to prolyl oligopeptidase and oligopeptidase B, which require both aminoterminal and carboxyterminal sequences for activity, PREPL activity appears to depend only on the carboxyterminal domain. Taken together, these results suggest that PREPL is a novel oligopeptidase, with unique structural and functional characteristics, involved in hypotonia-cystinuria syndrome.


Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.

  • Anne-Karin Arndt‎ et al.
  • American journal of human genetics‎
  • 2013‎

Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.


Haploinsufficiency of ALX4 as a potential cause of parietal foramina in the 11p11.2 contiguous gene-deletion syndrome.

  • Y Q Wu‎ et al.
  • American journal of human genetics‎
  • 2000‎

Heterozygous mutations in MSX2 are responsible for an autosomal dominant form of parietal foramina (PFM). PFM are oval defects of the parietal bones that are also a characteristic feature of a contiguous gene-deletion syndrome caused by a proximal deletion in the short arm of chromosome 11 (Potocki-Shaffer syndrome). We have identified a human bacterial artificial chromosome (BAC) clone mapping to chromosome 11, containing a region homologous to the human homeobox gene MSX2. Further sequence analysis demonstrated that the human orthologue (ALX4) of the mouse Aristaless-like 4 gene (Alx4) is contained within this 11p clone. We used FISH to test for the presence-or for the heterozygous deletion-of this clone in two patients with the 11p11.2-deletion syndrome and showed that this clone is deleted in these patients. ALX4 and Alx4 were shown to be expressed in bone and to be absent from all other tissues tested. The involvement of Alx4 in murine skull development, its bone-specific expression pattern, the fact that Alx4 is a dosage-sensitive gene in mice, and the localization of a human genomic clone containing ALX4 to 11p11.2, with hemizygosity in patients with deletion of 11p11.2 who have biparietal foramina, support the contention that ALX4 is a candidate gene for the PFM in the 11p11.2-deletion syndrome.


Single-amino-acid deletion in the RYR1 gene, associated with malignant hyperthermia susceptibility and unusual contraction phenotype.

  • N Sambuughin‎ et al.
  • American journal of human genetics‎
  • 2001‎

Malignant hyperthermia (MH) is an anesthetic-drug-induced, life-threatening hypermetabolic syndrome caused by abnormal calcium regulation in skeletal muscle. Often inherited as an autosomal dominant trait, MH has linkage to 30 different mutations in the RYR1 gene, which encodes a calcium-release-channel protein found in the sarcoplasmic reticulum membrane in skeletal muscle. All published RYR1 mutations exclusively represent single-nucleotide changes. The present report documents, in exon 44 of RYR1 in two unrelated, MH-susceptible families, a 3-bp deletion that results in deletion of a conserved glutamic acid at position 2347. This is the first deletion, in RYR1, found to be associated with MH susceptibility. MH susceptibility was confirmed among some family members by in vitro diagnostic pharmacological contracture testing of biopsied skeletal muscle. Although a single-amino-acid deletion appears to be a subtle change in the protein, the deletion of Glu2347 from RYR1 produces an unusually large electrically evoked contraction tension in MH-positive individuals, suggesting that this deletion produces an alteration in skeletal-muscle calcium regulation, even in the absence of pharmacological agents.


Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome.

  • Tjitske Kleefstra‎ et al.
  • American journal of human genetics‎
  • 2006‎

A clinically recognizable 9q subtelomeric deletion syndrome has recently been established. Common features seen in these patients are severe mental retardation, hypotonia, brachycephaly, flat face with hypertelorism, synophrys, anteverted nares, cupid bow or tented upper lip, everted lower lip, prognathism, macroglossia, conotruncal heart defects, and behavioral problems. The minimal critical region responsible for this 9q subtelomeric deletion (9q-) syndrome has been estimated to be <1 Mb and comprises the euchromatin histone methyl transferase 1 gene (EHMT1). Previous studies suggested that haploinsufficiency for EHMT1 is causative for 9q subtelomeric deletion syndrome. We have performed a comprehensive mutation analysis of the EHMT1 gene in 23 patients with clinical presentations reminiscent of 9q subtelomeric deletion syndrome. This analysis revealed three additional microdeletions that comprise the EHMT1 gene, including one interstitial deletion that reduces the critical region for this syndrome. Most importantly, we identified two de novo mutations--a nonsense mutation and a frameshift mutation--in the EHMT1 gene in patients with a typical 9q- phenotype. These results establish that haploinsufficiency of EHMT1 is causative for 9q subtelomeric deletion syndrome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: