Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Multiple Morphological Factors Underlie Experience-Dependent Cross-Modal Plasticity in the Developing Sensory Cortices.

  • Miao Wang‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2020‎

Sensory experience regulates the structural and functional wiring of sensory cortices. In previous work, we showed that whisker deprivation (WD) from birth not only reduced excitatory synaptic transmission of layer (L) 2/3 pyramidal neurons of the correspondent barrel cortex in mice, but also cross-modally reduced synaptic transmission of L2/3 pyramidal neurons in other sensory cortices. Here, we used in utero electroporation, in combination with optical clearing, to examine the main morphological components regulating neural circuit wiring, namely presynaptic bouton density, spine density, as well as dendrite and axon arbor lengths. We found that WD from P0 to P14 reduced presynaptic bouton density in both L4 and L2/3 inputs to L2/3 pyramidal neurons, as well as spine density across the dendritic tree of L2/3 pyramidal neurons, in the barrel field of the primary somatosensory cortex. The cross-modal effects in the primary auditory cortex were manifested mostly as reduced dendrite and axon arbor size, as well as reduced bouton density of L2/3 inputs. Increasing sensory experience by rearing mice in an enriched environment rescued the effects of WD. Together, these results demonstrate that multiple morphological factors contribute to experience-dependent structural plasticity during early wiring of the sensory cortices.


Smooth pursuit-related information processing in frontal eye field neurons that project to the NRTP.

  • Seiji Ono‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2009‎

The cortical pursuit system begins the process of transforming visual signals into commands for smooth pursuit (SP) eye movements. The frontal eye field (FEF), located in the fundus of arcuate sulcus, is known to play a role in SP and gaze pursuit movements. This role is supported, at least in part, by FEF projections to the rostral nucleus reticularis tegmenti pontis (rNRTP), which in turn projects heavily to the cerebellar vermis. However, the functional characteristics of SP-related FEF neurons that project to rNRTP have never been described. Therefore, we used microelectrical stimulation (ES) to deliver single pulses (50-200 microA, 200-micros duration) in rNRTP to antidromically activate FEF neurons. We estimated the eye or retinal error motion sensitivity (position, velocity, and acceleration) of FEF neurons during SP using multiple linear regression modeling. FEF neurons that projected to rNRTP were most sensitive to eye acceleration. In contrast, FEF neurons not activated following ES of rNRTP were often most sensitive to eye velocity. In similar modeling studies, we found that rNRTP neurons were also biased toward eye acceleration. Therefore, our results suggest that neurons in the FEF-rNRTP pathway carry signals that could play a primary role in initiation of SP.


Early Loss of Vision Results in Extensive Reorganization of Plasticity-Related Receptors and Alterations in Hippocampal Function That Extend Through Adulthood.

  • Mirko Feldmann‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2019‎

Although by adulthood cortical structures and their capacity for processing sensory information have become established and stabilized, under conditions of cortical injury, or sensory deprivation, rapid reorganization occurs. Little is known as to the impact of this kind of adaptation on cellular processes related to memory encoding. However, imaging studies in humans suggest that following loss or impairment of a sensory modality, not only cortical but also subcortical structures begin to reorganize. It is likely that these processes are supported by neurotransmitter receptors that enable synaptic and cortical plasticity. Here, we explored to what extent the expression of plasticity-related proteins (GABA-A, GABA-B, GluN1, GluN2A, GluN2B) is altered following early vision loss, and whether this impacts on hippocampal function. We observed that in the period of 2-4 months postnatally in CBA/J-mice that experience hereditary postnatal retinal degeneration, systematic changes of GABA-receptor and NMDA-receptor subunit expression occurred that emerged first in the hippocampus and developed later in the cortex, compared to control mice that had normal vision. Changes were accompanied by significant impairments in hippocampal long-term potentiation and hippocampus-dependent learning. These data indicate that during cortical adaptation to early loss of vision, hippocampal information processing is compromised, and this status impacts on the acquisition of spatial representations.


The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate.

  • A C Zappe‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2008‎

Hypercapnia is often used as vasodilatory challenge in clinical applications and basic research. In functional magnetic resonance imaging (fMRI), elevated CO(2) is applied to derive stimulus-induced changes in the cerebral rate of oxygen consumption (CMRO(2)) by measuring cerebral blood flow and blood-oxygenation-level-dependent (BOLD) signal. Such methods, however, assume that hypercapnia has no direct effect on CMRO(2). In this study, we used combined intracortical recordings and fMRI in the visual cortex of anesthetized macaque monkeys to show that spontaneous neuronal activity is in fact significantly reduced by moderate hypercapnia. As expected, measurement of cerebral blood volume using an exogenous contrast agent and of BOLD signal showed that both are increased during hypercapnia. In contrast to this, spontaneous fluctuations of local field potentials in the beta and gamma frequency range as well as multiunit activity are reduced by approximately 15% during inhalation of 6% CO(2) (pCO(2) = 56 mmHg). A strong tendency toward a reduction of neuronal activity was also found at CO(2) inhalation of 3% (pCO(2) = 45 mmHg). This suggests that CMRO(2) might be reduced during hypercapnia and caution must be exercised when hypercapnia is applied to calibrate the BOLD signal.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: