Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Ewing Sarcoma Related protein 1 recognizes R-loops by binding DNA forks.

  • Michelle A Lay‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

EWSR1 (Ewing Sarcoma Related protein 1) is an RNA binding protein that is ubiquitously expressed across cell lines and involved in multiple parts of RNA processing, such as transcription, splicing, and mRNA transport. EWSR1 has also been implicated in cellular mechanisms to control formation of R-loops, a three-stranded nucleic acid structure consisting of a DNA:RNA hybrid and a displaced single-stranded DNA strand. Unscheduled R-loops result in genomic and transcription stress. Loss of function of EWSR1 functions commonly found in Ewing Sarcoma correlates with high abundance of R-loops. In this study, we investigated the mechanism for EWSR1 to recognize an R-loop structure specifically. Using electrophoretic mobility shift assays (EMSA), we detected the high affinity binding of EWSR1 to substrates representing components found in R-loops. EWSR1 specificity could be isolated to the DNA fork region, which transitions between double- and single-stranded DNA. Our data suggests that the Zinc-finger domain (ZnF) with flanking arginine and glycine rich (RGG) domains provide high affinity binding, while the RNA recognition motif (RRM) with its RGG domains offer improved specificity. This model offers a rational for EWSR1 specificity to encompass a wide range in contexts due to the DNA forks always found with R-loops.


Carcinoma-associated fibroblast-like tumor cells remodel the Ewing sarcoma tumor microenvironment.

  • Emma D Wrenn‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Tumor heterogeneity is a major driver of cancer progression. In epithelial-derived malignancies, carcinoma-associated fibroblasts (CAFs) contribute to tumor heterogeneity by depositing extracellular matrix (ECM) proteins that dynamically remodel the tumor microenvironment (TME). Ewing sarcomas (EwS) are histologically monomorphous, mesenchyme-derived tumors that are devoid of CAFs. Here we identify a previously uncharacterized subpopulation of transcriptionally distinct EwS tumor cells that deposit pro-tumorigenic ECM. Single cell analyses revealed that these CAF-like cells differ from bulk EwS cells by their upregulation of a matrisome-rich gene signature that is normally repressed by EWS::FLI1, the oncogenic fusion transcription factor that underlies EwS pathogenesis. Further, our studies showed that ECM-depositing tumor cells express the cell surface marker CD73, allowing for their isolation ex vivo and detection in situ. Spatial profiling of tumor xenografts and patient biopsies demonstrated that CD73 + EwS cells and tumor cell-derived ECM are prevalent along tumor borders and invasive fronts. Importantly, despite loss of EWS::FLI1-mediated gene repression, CD73 + EwS cells retain expression of EWS::FLI1 and the fusion-activated gene signature, as well as tumorigenic and proliferative capacities. Thus, EwS tumor cells can be reprogrammed to adopt CAF-like properties and these transcriptionally and phenotypically distinct cell subpopulations contribute to tumor heterogeneity by remodeling the TME.


RNA Helicase DDX3 Regulates RAD51 Localization and DNA Damage Repair in Ewing Sarcoma.

  • Matthew E Randolph‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.


The DBD-α4 helix of EWS::FLI is required for GGAA microsatellite binding that underlies genome regulation in Ewing sarcoma.

  • Ariunaa Bayanjargal‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Ewing sarcoma is the second most common bone cancer in children and young adults. In 85% of patients, a translocation between chromosomes 11 and 22 results in a potent fusion oncoprotein, EWS::FLI. EWS::FLI is the only genetic alteration in an otherwise unaltered genome of Ewing sarcoma tumors. The EWS portion of the protein is an intrinsically disordered domain involved in transcriptional regulation by EWS::FLI. The FLI portion of the fusion contains a DNA binding domain shown to bind core GGAA motifs and GGAA repeats. A small alpha-helix in the DNA binding domain of FLI, DBD-α4 helix, is critical for the transcription function of EWS::FLI. In this study, we aimed to understand the mechanism by which the DBD-α4 helix promotes transcription, and therefore oncogenic transformation. We utilized a multi-omics approach to assess chromatin organization, active chromatin marks, genome binding, and gene expression in cells expressing EWS::FLI constructs with and without DBD-α4 helix. Our studies revealed DBD-α4 helix is crucial for cooperative binding of EWS::FLI at GGAA microsatellites. This binding underlies many aspects of genome regulation by EWS::FLI such as formation of TADs, chromatin loops, enhancers and productive transcription hubs.


FET fusion oncoproteins disrupt physiologic DNA repair networks in cancer.

  • Shruti Menon‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

While oncogenes promote cancer cell growth, unrestrained proliferation represents a significant stressor to cellular homeostasis networks such as the DNA damage response (DDR). To enable oncogene tolerance, many cancers disable tumor suppressive DDR signaling through genetic loss of DDR pathways and downstream effectors (e.g., ATM or p53 tumor suppressor mutations). Whether and how oncogenes can help "self-tolerize" by creating analogous functional deficiencies in physiologic DDR networks is not known. Here we focus on Ewing sarcoma, a FET fusion oncoprotein (EWS-FLI1) driven pediatric bone tumor, as a model for the class of FET rearranged cancers. Native FET protein family members are among the earliest factors recruited to DNA double-strand breaks (DSBs) during the DDR, though the function of both native FET proteins and FET fusion oncoproteins in DNA repair remains to be defined. Using preclinical mechanistic studies of the DDR and clinical genomic datasets from patient tumors, we discover that the EWS-FLI1 fusion oncoprotein is recruited to DNA DSBs and interferes with native FET (EWS) protein function in activating the DNA damage sensor ATM. As a consequence of FET fusion-mediated interference with the DDR, we establish functional ATM deficiency as the principal DNA repair defect in Ewing sarcoma and the compensatory ATR signaling axis as a collateral dependency and therapeutic target in multiple FET rearranged cancers. More generally, we find that aberrant recruitment of a fusion oncoprotein to sites of DNA damage can disrupt physiologic DSB repair, revealing a mechanism for how growth-promoting oncogenes can also create a functional deficiency within tumor suppressive DDR networks.


Restricting CAR T Cell Trafficking Expands Targetable Antigen Space.

  • Erin A Morales‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Chimeric antigen receptor (CAR) T cells are an effective treatment for some blood cancers. However, the lack of tumor-specific surface antigens limits their wider use. We identified a set of surface antigens that are limited in their expression to cancer and the central nervous system (CNS). We developed CAR T cells against one of these antigens, LINGO1, which is widely expressed in Ewing sarcoma (ES). To prevent CNS targeting, we engineered LINGO1 CAR T cells lacking integrin α4 (A4ko), an adhesion molecule essential for migration across the blood-brain barrier. A4ko LINGO1 CAR T cells were efficiently excluded from the CNS but retained efficacy against ES. We show that altering adhesion behavior expands the set of surface antigens targetable by CAR T cells.


ETS1, a target gene of the EWSR1::FLI1 fusion oncoprotein, regulates the expression of the focal adhesion protein TENSIN3.

  • Vernon Justice Ebegboni‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.


Insights into Molecular Diversity within the FET Family: Unraveling Phase Separation of the N-Terminal Low Complexity Domain from RNA-Binding Protein EWS.

  • Courtney N Johnson‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The FET family proteins, which includes FUS, EWS, and TAF15, are RNA chaperones instrumental in processes such as mRNA maturation, transcriptional regulation, and the DNA damage response. These proteins have clinical significance: chromosomal rearrangements in FET proteins are implicated in Ewing family tumors and related sarcomas. Furthermore, point mutations in FUS and TAF15 are associated with neurodegenerative conditions like amyotrophic lateral sclerosis and frontotemporal lobar dementia. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion not only alters transcriptional programs but also hinders native EWS functions like splicing. However, the precise function of the intrinsically disordered EWSLCD is still a topic of active investigation. Due to its flexible nature, EWSLCD can form transient interactions with itself and other biomolecules, leading to the formation of biomolecular condensates through phase separation - a mechanism thought to be central to the oncogenicity of EWS::FLI1. In our study, we used paramagnetic relaxation enhancement NMR, analytical ultracentrifugation, light microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of EWSLCD. Our aim was to elucidate the molecular events that underpin EWSLCD-mediated biomolecular condensation. Our NMR data suggest tyrosine residues primarily drive the interactions vital for EWSLCD phase separation. Moreover, a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. Atomistic MD simulations and hydrodynamic experiments revealed that the tyrosine-rich N and C-termini tend to populate compact conformations, establishing unique contact networks, that are connected by a predominantly extended, tyrosine-depleted, linker region. MD simulations provide critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular), and changes in protein conformations upon condensation. These results offer deeper insights into the condensate-forming abilities of the FET proteins and highlights unique structural and functional nuances between EWS and its counterparts, FUS and TAF15.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: