2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,931 papers

New Pharmaceutical Salts of Trazodone.

  • Jolanta Jaśkowska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

New pharmaceutically acceptable salts of trazodone (trazodone hydrogen bromide and trazodone 1-hydroxy-2-naphthonic acid) for the treatment of central nervous system disorders are synthesized and described. Although trazodone salts are poorly crystalline, single-crystal X-ray diffraction data for trazodone 1-hydroxy-2-naphthonic acid were collected and analyzed as well as compared to the previously described crystal structure of commercially available trazodone hydrochloride. The powder samples of all new salts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of carbon chemical shielding constants. The main goal of our research was to find salts with better physicochemical properties and to make an attempt to associate them with both the anion structure and the most prominent interactions exhibited by the protonated trazodone cation. The dissolution profiles of trazodone from tablets prepared from various salts with lactose monohydrate were investigated. The studies revealed that salts with simple anions show a fast release of the drug while the presence of more complex anion, more strongly interacting with the cation, effects a slow-release profile of the active substance and can be used for the preparation of the tables with a delay or prolonged mode of action.


Manganese salts function as potent adjuvants.

  • Rui Zhang‎ et al.
  • Cellular & molecular immunology‎
  • 2021‎

Aluminum-containing adjuvants have been used for nearly 100 years to enhance immune responses in billions of doses of vaccines. To date, only a few adjuvants have been approved for use in humans, among which aluminum-containing adjuvants are the only ones widely used. However, the medical need for potent and safe adjuvants is currently continuously increasing, especially those triggering cellular immune responses for cytotoxic T lymphocyte activation, which are urgently needed for the development of efficient virus and cancer vaccines. Manganese is an essential micronutrient required for diverse biological activities, but its functions in immunity remain undefined. We previously reported that Mn2+ is important in the host defense against cytosolic dsDNA by facilitating cGAS-STING activation and that Mn2+ alone directly activates cGAS independent of dsDNA, leading to an unconventional catalytic synthesis of 2'3'-cGAMP. Herein, we found that Mn2+ strongly promoted immune responses by facilitating antigen uptake, presentation, and germinal center formation via both cGAS-STING and NLRP3 activation. Accordingly, a colloidal manganese salt (Mn jelly, MnJ) was formulated to act not only as an immune potentiator but also as a delivery system to stimulate humoral and cellular immune responses, inducing antibody production and CD4+/CD8+ T-cell proliferation and activation by either intramuscular or intranasal immunization. When administered intranasally, MnJ also worked as a mucosal adjuvant, inducing high levels of secretory IgA. MnJ showed good adjuvant effects for all tested antigens, including T cell-dependent and T cell-independent antigens, such as bacterial capsular polysaccharides, thus indicating that it is a promising adjuvant candidate.


1-Hydroxyalkylphosphonium Salts-Synthesis and Properties.

  • Jakub Adamek‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

An efficient and convenient method for the synthesis of 1-hydroxyalkylphosphonium salts is described. Reactions were carried out at room temperature, in a short time, and without chromatography for product isolation. The properties of the obtained phosphonium salts were examined and discussed. In this paper, primary attention was paid to the stability of phosphonium salts, depending on the structure of the aldehydes used as substrates in their preparation. Other conditions such as the type of solvent, temperature, and molar ratio of the substrates were also investigated. Finally, the high reactivity of 1-hydroxyalkylphosphonium salts was demonstrated in reactions with amide-type substrates and (hetero)aromatic compounds. The developed step-by-step procedure (with the isolation of 1-hydroxyphosphonium salts) was compared to the one-pot protocol (in situ formation of such phosphonium salts).


Synthesis and properties of acetamidinium salts.

  • Zdeněk Jalový‎ et al.
  • Chemistry Central journal‎
  • 2011‎

Acetamidines are starting materials for synthesizing many chemical substances, such as imidazoles, pyrimidines and triazines, which are further used for biochemically active compounds as well as energetic materials. The aim of this study was to synthesise and characterise a range of acetamidinium salts in order to overcome the inconvenience connected with acetamidinium chloride, which is the only commercially available acetamidinium salt.


Wide-Antimicrobial Spectrum of Picolinium Salts.

  • Sarka Salajkova‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.


Versatile Solid Modifications of Multicomponent Pharmaceutical Salts: Novel Metformin-Rhein Salts Based on Advantage Complementary Strategy Design.

  • Mingchao Yu‎ et al.
  • Pharmaceutics‎
  • 2023‎

This study aimed to develop an effective treatment for diabetes and diabetic complications, based on the advantage complementary strategy of drug-drug salt, by designing and synthesizing the multicomponent molecular salts containing metformin (MET) and rhein (RHE). Finally, the salts of MET-RHE (1:1), MET-RHE-H2O (1:1:1), MET-RHE-ethanol-H2O (1:1:1:1), and MET-RHE-acetonitrile (2:2:1) were obtained, indicating the polymorphism of salts formed by MET and RHE. The structures were analyzed by the combination of characterization experiments and theoretical calculation, and the formation mechanism of polymorphism was discussed. The obtained results of in vitro evaluation showed that MET-RHE had a similar hygroscopicity with metformin hydrochloride (MET·HCl), and the solubility of the component of RHE increased by approximately 93 times, which laid a foundation for improving the bioavailability of MET and RHE in vivo. The evaluation of hypoglycemic activity in mice (C57BL/6N) indicated that MET-RHE exhibited better hypoglycemic activity than the parent drugs and the physical mixtures of MET and RHE. The above findings demonstrate that this study achieved the complementary advantages of MET and RHE through the multicomponent pharmaceutical salification technique, and provides new possibilities for the treatment of diabetic complications.


Diffusiophoretic Movements of Polystyrene Particles in a H-Shaped Channel for Inorganic Salts, Carboxylic Acids, and Organic Salts.

  • Nicole A B Timmerhuis‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2022‎

Diffusiophoresis is the movement of particles as a result of a concentration gradient, where the particles can move toward higher concentrations. The magnitude of the movement is largest for the electrolyte solute and depends upon the relative concentration gradient, surface potential, and diffusivity contrast between the cation and anion. Here, diffusiophoresis of ordinary polystyrene particles is studied in a H-shaped channel for different solutes. The experimental results are compared to a numerical model, which is solely based on the concentration gradient, surface potential, and diffusivity contrast. The surface potential of the particles was measured to use as input for the numerical model. The diffusiophoretic movement of the experiments aligns well with the theoretical predicted movement for the inorganic (lithium chloride and sodium bicarbonate) and organic (lithium formate, sodium formate, and potassium formate) salts measured. However, for the carboxylic acids (formic, acetic, and oxalic acids) measured, the theoretical model and experiment do not align because they are weak acids and only partially dissociate, creating a driving force for diffusiophoresis. Overall, the H-shaped channel can be used in the future as a platform to measure diffusiophoretic movement for more complex systems, for example, with mixtures and asymmetric valence electrolytes.


Highly Hydrophilic and Lipophilic Derivatives of Bile Salts.

  • M Pilar Vázquez-Tato‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Lipophilicity of 15 derivatives of sodium cholate, defined by the octan-1-ol/water partition coefficient (log P), has been theoretically determined by the Virtual log P method. These derivatives bear highly hydrophobic or highly hydrophilic substituents at the C3 position of the steroid nucleus, being linked to it through an amide bond. The difference between the maximum value of log P and the minimum one is enlarged to 3.5. The partition coefficient and the critical micelle concentration (cmc) are tightly related by a double-logarithm relationship (VirtuallogP=-(1.00±0.09)log(cmcmM)+(2.79±0.09)), meaning that the Gibbs free energies for the transfer of a bile anion from water to either a micelle or to octan-1-ol differ by a constant. The equation also means that cmc can be used as a measurement of lipophilicity. The demicellization of the aggregates formed by three derivatives of sodium cholate bearing bulky hydrophobic substituents has been studied by surface tension and isothermal titration calorimetry. Aggregation numbers, enthalpies, free energies, entropies, and heat capacities, ΔCP,demic, were obtained. ΔCP,demic, being positive, means that the interior of the aggregates is hydrophobic.


Fluoroquinolone-Based Organic Salts (GUMBOS) with Antibacterial Potential.

  • Fábio M S Costa‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Antimicrobial resistance is a silent pandemic considered a public health concern worldwide. Strategic therapies are needed to replace antibacterials that are now ineffective. One approach entails the use of well-known antibacterials along with adjuvants that possess non-antibiotic properties but can extend the lifespan and enhance the effectiveness of the treatment, while also improving the suppression of resistance. In this regard, a group of uniform materials based on organic salts (GUMBOS) presents an alternative to this problem allowing the combination of antibacterials with adjuvants. Fluoroquinolones are a family of antibacterials used to treat respiratory and urinary tract infections with broad-spectrum activity. Ciprofloxacin and moxifloxacin-based GUMBOS were synthesized via anion exchange reactions with lithium and sodium salts. Structural characterization, thermal stability and octanol/water partition ratios were evaluated. The antibacterial profiles of most GUMBOS were comparable to their cationic counterparts when tested against Gram-positive S. aureus and Gram-negative E. coli, except for deoxycholate anion, which demonstrated the least effective antibacterial activity. Additionally, some GUMBOS were less cytotoxic to L929 fibroblast cells and non-hemolytic to red blood cells. Therefore, these agents exhibit promise as an alternative approach to combining drugs for treating infections caused by resistant bacteria.


Electrochemical water oxidation by simple manganese salts.

  • Sima Heidari‎ et al.
  • Scientific reports‎
  • 2019‎

Recently, it has been great efforts to synthesize an efficient water-oxidizing catalyst. However, to find the true catalyst in the harsh conditions of the water-oxidation reaction is an open area in science. Herein, we showed that corrosion of some simple manganese salts, MnCO3, MnWO4, Mn3(PO4)2 · 3H2O, and Mn(VO3)2 · xH2O, under the water-electrolysis conditions at pH = 6.3, gives an amorphous manganese oxide. This conversion was studied with X-ray absorption spectroscopy (XAS), as well as, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), spectroelectrochemistry and electrochemistry methods. When using as a water-oxidizing catalyst, such results are important to display that long-term water oxidation can change the nature of the manganese salts.


Gourmet Table Salts: The Mineral Composition Showdown.

  • Eleonora Di Salvo‎ et al.
  • Toxics‎
  • 2023‎

Table salts with their specialty flake size, textures, flavors, and colors can be considered a gastronomy niche food already increasing in demand worldwide. Being unrefined, they can contain trace elements potentially both healthy and toxic. In this study, 12 mineral elements (Al, Ca, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in 10 different salts commercially available in southern Italy namely, Atlantic grey, Baule volante, Guerande, Hawaiian pink, Hawaiian black, Himalayan pink, Maldon, Mozia, Persian blue, and smoked salts were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation-atomic absorption spectrophotometry (TDA-AAS). The concentration of mineral elements was variable according to the type of salt and its geographical origin. Co, Cr, Cu, Hg, Pb, and Se levels were tolerable and Al, Ca, Fe, Mn, Ni, and Zn ranged significantly among the samples. Persian Blue and Atlantic Grey salts showed elevated levels of Fe and Zn; their intake can be helpful in some specific conditions. Nevertheless, Ni levels were high in Persian Blue and Smoked salts. Pb exceeded the maximum level in all samples. Additional monitoring analyses of mineral contents in table salts are recommended for human health.


Bath salts: the ivory wave of trouble.

  • Travis D Olives‎ et al.
  • The western journal of emergency medicine‎
  • 2012‎

No abstract available


Bile salts adsorption on dextran-based hydrogels.

  • Magdalena Cristina Stanciu‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Dextran-based gels bearing two types of pendant N, N-dimethyl-N-alkyl-N-(2-hydroxypropyl) ammonium chloride groups with different alkyl chain length substituents (C2 and C12/C16, respectively) at the quaternary nitrogen were synthesized and structural characteristics of the compounds were studied by elemental analysis, potentiometric titration, FTIR and NMR spectroscopy. The morphology and size of polymeric microspheres were examined by SEM and their swelling behavior in water was also investigated. The hydrogels were evaluated as sorbents for sodium cholate (NaCA) and sodium deoxycholate (NaDCA) in water and 10 mM NaCl solutions. Different isotherm models (nearest-neighbor-interaction, Langmuir, Freundlich, Dubinin-Raduskevich, Sips and Hill) were used to elucidate the adsorption mechanism and established the characteristics of the most efficient polymeric sorbent. The maximum adsorption capacity of the gels was highly controlled by gel hydrophobicity which enhanced gel-bile salt affinity but decreased binding cooperativity. Swelling porosity, ionic strength and ligand lipophilicity were other factors that also affected the adsorption process. The hydrogel having 25 mol% pendant dodecyl groups retained the maximum amount of bile salts (1051 mg NaCA/g and 1138 mg NaDCA/g). All hydrophobically modified hydrogels revealed a better affinity and strength of binding compared to commercial Cholestyramine®.


Organic Salts of Pharmaceutical Impurity p-Aminophenol.

  • U B Rao Khandavilli‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The presence of impurities can drastically affect the efficacy and safety of pharmaceutical entities. p-Aminophenol (PAP) is one of the main impurities of paracetamol (PA) that can potentially show toxic effects such as maternal toxicity and nephrotoxicity. The removal of PAP from PA is challenging and difficult to achieve through regular crystallization approaches. In this regard, we report four new salts of PAP with salicylic acid (SA), oxalic acid (OX), l-tartaric acid (TA), and (1S)-(+)-10-camphorsulfonic acid (CSA). All the PAP salts were analyzed using single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The presence of minute amounts of PAP in paracetamol solids gives a dark color to the product that was difficult to remove through crystallization. In our study, we found that the addition of small quantities of the aforementioned acids helps to remove PAP from PA during the filtration and washings. This shows that salt formation could be used to efficiently remove challenging impurities.


Synthesis of Multifunctional Aryl(trifloxyalkenyl)iodonium Triflate Salts.

  • Balázs L Tóth‎ et al.
  • ACS omega‎
  • 2019‎

A convenient procedure for the synthesis of aryl(trifloxyalkenyl)iodonium triflate salts from commercially available (diacetoxyiodo)benzene, trimethylsilyl trifluoromethanesulfonate, and acetylenes under mild conditions was developed. The obtained multifunctional hypervalent vinyliodonium salts equipped with electrophilic and nucleophilic functions could serve as novel C2 synthons for organic transformations. The structure of the iodonium salts was identified by multidimensional NMR spectroscopy and X-ray crystallography.


Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts.

  • Yoshito Ikeda‎ et al.
  • Scientific reports‎
  • 2017‎

Bile salts have potent detergent properties and damaging effects on cell membranes, leading to liver injury. However, the molecular mechanisms for the protection of hepatocytes against bile salts are not fully understood. In this study, we demonstrated that the cytotoxicity of nine human major bile salts to HepG2 cells and primary human hepatocytes was prevented by phosphatidylcholine (PC). In contrast, cholesterol had no direct cytotoxic effects but suppressed the cytoprotective effects of PC. PC reduced the cell-association of bile salt, which was reversed by cholesterol. Light scattering measurements and gel filtration chromatography revealed that cholesterol within bile salt/PC dispersions decreased mixed micelles but increased vesicles, bile salt simple micelles and monomers. These results suggest that cholesterol attenuates the cytoprotective effects of PC against bile salts by facilitating the formation of bile salt simple micelles and monomers. Therefore, biliary PC and cholesterol may play different roles in the pathogenesis of bile salt-induced liver injury.


Unsaturated fatty acid salts remove biofilms on dentures.

  • Teruyuki Hara‎ et al.
  • Scientific reports‎
  • 2021‎

Candidiasis-causing Candida sp. forms biofilms with various oral bacteria in the dentures of the elderly, making it harder to kill and remove the microorganism due to the extracellular polymeric substances. We found that biofilms on dentures can effectively be removed by immersion in an unsaturated fatty acid salt solution. Using optical coherence tomography to observe the progression of biofilm removal by the fatty acid salt solution, we were able to determine that the removal was accompanied by the production of gaps at the interface between the biofilm and denture resin. Furthermore, microstructural electron microscopy observations and time-of-flight secondary ion mass spectrometry elucidated the site of action, revealing that localization of the fatty acid salt at the biofilm/denture-resin interface is an important factor.


New Crystalline Salts of Nicotinamide Riboside as Food Additives.

  • Günter Schabert‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

NR+ is a highly effective vitamin B3 type supplement due to its unique ability to replenish NAD+ levels. While NR+ chloride is already on the market as a nutritional supplement, its synthesis is challenging, expensive, and low yielding, making it cumbersome for large-scale industrial production. Here we report the novel crystalline NR+ salts, d/l/dl-hydrogen tartrate and d/l/dl-hydrogen malate. Their high-yielding, one-pot manufacture does not require specific equipment and is suitable for multi-ton scale production. These new NR+ salts seem ideal for nutritional applications due to their bio-equivalence compared to the approved NR+ chloride. In addition, the crystal structures of all stereoisomers of NR+ hydrogen tartrate and NR+ hydrogen malate and a comparison to the known NR+ halogenides are presented.


Dual anticancer and antibacterial activity of fluorescent naphthoimidazolium salts.

  • Dung Ngoc Tran‎ et al.
  • RSC advances‎
  • 2023‎

Cancer has emerged as a significant global health challenge, ranking as the second leading cause of death worldwide. Moreover, cancer patients frequently experience compromised immune systems, rendering them susceptible to bacterial infections. Combining anticancer and antibacterial properties in a single drug could lead to improved overall treatment outcomes and patient well-being. In this context, the present study focused on a series of hydrophilic naphthoimidazolium salts with donor groups (NI-R), aiming to create dual-functional agents with antibacterial and anticancer activities. Among these compounds, NI-TPA demonstrated notable antibacterial activity, particularly against drug-resistant bacteria, with MIC value of 7.8 μg mL-1. Furthermore, NI-TPA exhibited the most potent cytotoxicity against four different cancer cell lines, with an IC50 range of 0.67-2.01 μg mL-1. The observed high cytotoxicity of NI-TPA agreed with molecular docking and dynamic simulation studies targeting c-Met kinase protein. Additionally, NI-TPA stood out as the most promising candidate for two-photo excitation, fluorescence bioimaging, and localization in lysosomes. The study findings open new avenues for the design and development of imidazolium salts that could be employed in phototheranostic applications for cancer treatment and bacterial infections.


Synthesis and antimicrobial activity of some pyridinium salts.

  • Vildan Alptüzün‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2009‎

Some substituted benzylidenehydrazinylpyridinium derivatives bearing benzyl, ethylphenyl and propylphenyl groups on the pyridinium nitrogen were synthesized and screened for possible antibacterial and antifungal activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans using the microdilution method. Antimicrobial test results indicated that compounds containing a 3-phenylpropyl chain displayed the highest antimicrobial activity against Staphylococcus aureus and the compound 3d was the most active in the series against all tested bacteria and fungi strains.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: