2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response.

  • Joanna Bancerek‎ et al.
  • Immunity‎
  • 2013‎

Gene regulation by cytokine-activated transcription factors of the signal transducer and activator of transcription (STAT) family requires serine phosphorylation within the transactivation domain (TAD). STAT1 and STAT3 TAD phosphorylation occurs upon promoter binding by an unknown kinase. Here, we show that the cyclin-dependent kinase 8 (CDK8) module of the Mediator complex phosphorylated regulatory sites within the TADs of STAT1, STAT3, and STAT5, including S727 within the STAT1 TAD in the interferon (IFN) signaling pathway. We also observed a CDK8 requirement for IFN-γ-inducible antiviral responses. Microarray analyses revealed that CDK8-mediated STAT1 phosphorylation positively or negatively regulated over 40% of IFN-γ-responsive genes, and RNA polymerase II occupancy correlated with gene expression changes. This divergent regulation occurred despite similar CDK8 occupancy at both S727 phosphorylation-dependent and -independent genes. These data identify CDK8 as a key regulator of STAT1 and antiviral responses and suggest a general role for CDK8 in STAT-mediated transcription. As such, CDK8 represents a promising target for therapeutic manipulation of cytokine responses.


Fas Promotes T Helper 17 Cell Differentiation and Inhibits T Helper 1 Cell Development by Binding and Sequestering Transcription Factor STAT1.

  • Gerd Meyer Zu Horste‎ et al.
  • Immunity‎
  • 2018‎

The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity.


The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response.

  • Mathieu Blanc‎ et al.
  • Immunity‎
  • 2013‎

Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.


The transcription factor IRF2 drives interferon-mediated CD8+ T cell exhaustion to restrict anti-tumor immunity.

  • Sabelo Lukhele‎ et al.
  • Immunity‎
  • 2022‎

Type I and II interferons (IFNs) stimulate pro-inflammatory programs that are critical for immune activation, but also induce immune-suppressive feedback circuits that impede control of cancer growth. Here, we sought to determine how these opposing programs are differentially induced. We demonstrated that the transcription factor interferon regulatory factor 2 (IRF2) was expressed by many immune cells in the tumor in response to sustained IFN signaling. CD8+ T cell-specific deletion of IRF2 prevented acquisition of the T cell exhaustion program within the tumor and instead enabled sustained effector functions that promoted long-term tumor control and increased responsiveness to immune checkpoint and adoptive cell therapies. The long-term tumor control by IRF2-deficient CD8+ T cells required continuous integration of both IFN-I and IFN-II signals. Thus, IRF2 is a foundational feedback molecule that redirects IFN signals to suppress T cell responses and represents a potential target to enhance cancer control.


Differential Activation of the Transcription Factor IRF1 Underlies the Distinct Immune Responses Elicited by Type I and Type III Interferons.

  • Adriana Forero‎ et al.
  • Immunity‎
  • 2019‎

Type I and III interferons (IFNs) activate similar downstream signaling cascades, but unlike type I IFNs, type III IFNs (IFNλ) do not elicit strong inflammatory responses in vivo. Here, we examined the molecular mechanisms underlying this disparity. Type I and III IFNs displayed kinetic differences in expression of IFN-stimulated genes and proinflammatory responses, with type I IFNs preferentially stimulating expression of the transcription factor IRF1. Type III IFNs failed to induce IRF1 expression because of low IFNλ receptor abundance and insufficient STAT1 activation on epithelial cells and thus did not activate the IRF1 proinflammatory gene program. Rather, IFNλ stimulation preferentially induced factors implicated in tissue repair. Our findings suggest that IFN receptor compartmentalization and abundance confer a spatiotemporal division of labor where type III IFNs control viral spread at the site of the infection while restricting tissue damage; the transient induction of inflammatory responses by type I IFNs recruits immune effectors to promote protective immunity.


The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells.

  • Shigeru Iwata‎ et al.
  • Immunity‎
  • 2017‎

Host defense requires the specification of CD4+ helper T (Th) cells into distinct fates, including Th1 cells that preferentially produce interferon-γ (IFN-γ). IFN-γ, a member of a large family of anti-pathogenic and anti-tumor IFNs, induces T-bet, a lineage-defining transcription factor for Th1 cells, which in turn supports IFN-γ production in a feed-forward manner. Herein, we show that a cell-intrinsic role of T-bet influences how T cells perceive their secreted product in the environment. In the absence of T-bet, IFN-γ aberrantly induced a type I IFN transcriptomic program. T-bet preferentially repressed genes and pathways ordinarily activated by type I IFNs to ensure that its transcriptional response did not evoke an aberrant amplification of type I IFN signaling circuitry, otherwise triggered by its own product. Thus, in addition to promoting Th1 effector commitment, T-bet acts as a repressor in differentiated Th1 cells to prevent abberant autocrine type I IFN and downstream signaling.


Nonconventional initiation complex assembly by STAT and NF-kappaB transcription factors regulates nitric oxide synthase expression.

  • Matthias Farlik‎ et al.
  • Immunity‎
  • 2010‎

Transcriptional regulation of the Nos2 gene encoding inducible nitric oxide synthase (iNOS) requires type I interferon (IFN-I) signaling and additional signals emanating from pattern recognition receptors. Here we showed sequential and cooperative contributions of the transcription factors ISGF3 (a complex containing STAT1, STAT2, and IRF9 subunits) and NF-kappaB to the transcriptional induction of the Nos2 gene in macrophages infected with the intracellular bacterial pathogen Listeria monocytogenes. NF-kappaB preceded ISGF3 at the Nos2 promoter and generated a transcriptional memory effect by depositing basal transcription factor TFIIH with the associated CDK7 kinase for serine 5 phosphorylation of the RNA polymerase II (pol II) carboxyterminal domain (CTD). Subsequent to TFIIH deposition by NF-kappaB, ISGF3 attracted the pol II enzyme and phosphorylation at CTD S5 occurred. Thus, STATs and NF-kappaB cooperate through pol II promoter recruitment and the phosphorylation of its CTD, respectively, as a prerequisite for productive elongation of iNOS mRNA.


The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells.

  • Suling Li‎ et al.
  • Immunity‎
  • 2012‎

Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.


Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein.

  • Pavlo Gilchuk‎ et al.
  • Immunity‎
  • 2018‎

Ebolaviruses cause severe disease in humans, and identification of monoclonal antibodies (mAbs) that are effective against multiple ebolaviruses are important for therapeutics development. Here we describe a distinct class of broadly neutralizing human mAbs with protective capacity against three ebolaviruses infectious for humans: Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) viruses. We isolated mAbs from human survivors of ebolavirus disease and identified a potent mAb, EBOV-520, which bound to an epitope in the glycoprotein (GP) base region. EBOV-520 efficiently neutralized EBOV, BDBV, and SUDV and also showed protective capacity in relevant animal models of these infections. EBOV-520 mediated protection principally by direct virus neutralization and exhibited multifunctional properties. This study identified a potent naturally occurring mAb and defined key features of the human antibody response that may contribute to broad protection. This multifunctional mAb and related clones are promising candidates for development as broadly protective pan-ebolavirus therapeutic molecules.


T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor β2.

  • Meghan A Koch‎ et al.
  • Immunity‎
  • 2012‎

Foxp3(+) regulatory T (Treg) cells limit inflammatory responses and maintain immune homeostasis. Although comprised of several phenotypically and functionally distinct subsets, the differentiation of specialized Treg cell populations within the periphery is poorly characterized. We demonstrate that the development of T-bet(+) Treg cells that potently inhibit T helper 1 (Th1) cell responses was dependent on the transcription factor STAT1 and occurred directly in response to interferon-γ produced by effector T cells. Additionally, delayed induction of the IL-12Rβ2 receptor component after STAT1 activation helped ensure that Treg cells do not readily complete STAT4-dependent Th1 cell development and lose their ability to suppress effector T cell proliferation. Thus, we define a pathway of abortive Th1 cell development that results in the specialization of peripheral Treg cells and demonstrate that impaired expression of a single cytokine receptor helps maintain Treg cell-suppressive function in the context of inflammatory Th1 cell responses.


Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12.

  • Edda G Schulz‎ et al.
  • Immunity‎
  • 2009‎

Differentiation of naive T lymphocytes into type I T helper (Th1) cells requires interferon-gamma and interleukin-12. It is puzzling that interferon-gamma induces the Th1 transcription factor T-bet, whereas interleukin-12 mediates Th1 cell lineage differentiation. We use mathematical modeling to analyze the expression kinetics of T-bet, interferon-gamma, and the IL-12 receptor beta2 chain (IL-12Rbeta2) during Th1 cell differentiation, in the presence or absence of interleukin-12 or interferon-gamma signaling. We show that interferon-gamma induced initial T-bet expression, whereas IL-12Rbeta2 was repressed by T cell receptor (TCR) signaling. The termination of TCR signaling permitted upregulation of IL-12Rbeta2 by T-bet and interleukin-12 signaling that maintained T-bet expression. This late expression of T-bet, accompanied by the upregulation of the transcription factors Runx3 and Hlx, was required to imprint the Th cell for interferon-gamma re-expression. Thus initial polarization and subsequent imprinting of Th1 cells are mediated by interlinked, sequentially acting positive feedback loops of TCR-interferon-gamma-Stat1-T-bet and interleukin-12-Stat4-T-bet signaling.


Interferon-β acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation.

  • Francisco Fueyo-González‎ et al.
  • Immunity‎
  • 2022‎

Type I interferons (IFNs) are pleiotropic cytokines with potent antiviral properties that also promote protective T cell and humoral immunity. Paradoxically, type I IFNs, including the widely expressed IFNβ, also have immunosuppressive properties, including promoting persistent viral infections and treating T-cell-driven, remitting-relapsing multiple sclerosis. Although associative evidence suggests that IFNβ mediates these immunosuppressive effects by impacting regulatory T (Treg) cells, mechanistic links remain elusive. Here, we found that IFNβ enhanced graft survival in a Treg-cell-dependent murine transplant model. Genetic conditional deletion models revealed that the extended allograft survival was Treg cell-mediated and required IFNβ signaling on T cells. Using an in silico computational model and analysis of human immune cells, we found that IFNβ directly promoted Treg cell induction via STAT1- and P300-dependent Foxp3 acetylation. These findings identify a mechanistic connection between the immunosuppressive effects of IFNβ and Treg cells, with therapeutic implications for transplantation, autoimmunity, and malignancy.


A PGE2-MEF2A axis enables context-dependent control of inflammatory gene expression.

  • Francesco Cilenti‎ et al.
  • Immunity‎
  • 2021‎

Tight control of inflammatory gene expression by antagonistic environmental cues is key to ensure immune protection while preventing tissue damage. Prostaglandin E2 (PGE2) modulates macrophage activation during homeostasis and disease, but the underlying mechanisms remain incompletely characterized. Here we dissected the genomic properties of lipopolysaccharide (LPS)-induced genes whose expression is antagonized by PGE2. The latter molecule targeted a set of inflammatory gene enhancers that, already in unstimulated macrophages, displayed poorly permissive chromatin organization and were marked by the transcription factor myocyte enhancer factor 2A (MEF2A). Deletion of MEF2A phenocopied PGE2 treatment and abolished type I interferon (IFN I) induction upon exposure to innate immune stimuli. Mechanistically, PGE2 interfered with LPS-mediated activation of ERK5, a known transcriptional partner of MEF2. This study highlights principles of plasticity and adaptation in cells exposed to a complex environment and uncovers a transcriptional circuit for IFN I induction with relevance for infectious diseases or cancer.


Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells.

  • Ge Ma‎ et al.
  • Immunity‎
  • 2011‎

Myeloid-derived suppressor cells (MDSCs) bear characteristics of precursors for both M1 and M2 macrophages. The molecular mechanism underlying the differentiation into M1 and M2 macrophages and the relationship of this differentiation to antitumor responses remains largely undefined. Herein, we investigate the potential function of paired immunoglobulin-like receptor B (PIR-B), also known as leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3) in MDSC differentiation, and its role in tumor-induced immunity. Our studies indicated that MDSCs genetically ablated for PIR-B (Lilrb3(-/-)) underwent a specific transition to M1-like cells when entering the periphery from bone marrow, resulting in decreased suppressive function, regulatory T cell activation activity, primary tumor growth, and lung metastases. Activation of Toll-like receptor (TLR), signal transducers, and activators of transcription 1 (STAT1), and nuclear factor-kappa B (NF-κB) signaling in Lilrb3(-/-) MDSC promoted the acquisition of M1 phenotype. Inhibition of the PIR-B signaling pathway promoted MDSC differentiation into M1 macrophages.


Slc6a8-Mediated Creatine Uptake and Accumulation Reprogram Macrophage Polarization via Regulating Cytokine Responses.

  • Liangliang Ji‎ et al.
  • Immunity‎
  • 2019‎

Macrophage polarization is accompanied by drastic changes in L-arginine metabolism. Two L-arginine catalytic enzymes, iNOS and arginase 1, are well-characterized hallmark molecules of classically and alternatively activated macrophages, respectively. The third metabolic fate of L-arginine is the generation of creatine that acts as a key source of cellular energy reserve, yet little is known about the role of creatine in the immune system. Here, genetic, genomic, metabolic, and immunological analyses revealed that creatine reprogrammed macrophage polarization by suppressing M(interferon-γ [IFN-γ]) yet promoting M(interleukin-4 [IL-4]) effector functions. Mechanistically, creatine inhibited the induction of immune effector molecules, including iNOS, by suppressing IFN-γ-JAK-STAT1 transcription-factor signaling while supporting IL-4-STAT6-activated arginase 1 expression by promoting chromatin remodeling. Depletion of intracellular creatine by ablation of the creatine transporter Slc6a8 altered macrophage-mediated immune responses in vivo. These results uncover a previously uncharacterized role for creatine in macrophage polarization by modulating cellular responses to cytokines such as IFN-γ and IL-4.


The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer.

  • Tarek Taifour‎ et al.
  • Immunity‎
  • 2023‎

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization.

  • Pavlo Gilchuk‎ et al.
  • Immunity‎
  • 2020‎

Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.


Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid β plaques.

  • Ethan R Roy‎ et al.
  • Immunity‎
  • 2022‎

The principal signals that drive memory and cognitive impairment in Alzheimer's disease (AD) remain elusive. Here, we revealed brain-wide cellular reactions to type I interferon (IFN-I), an innate immune cytokine aberrantly elicited by amyloid β plaques, and examined their role in cognition and neuropathology relevant to AD in a murine amyloidosis model. Using a fate-mapping reporter system to track cellular responses to IFN-I, we detected robust, Aβ-pathology-dependent IFN-I activation in microglia and other cell types. Long-term blockade of IFN-I receptor (IFNAR) rescued both memory and synaptic deficits and resulted in reduced microgliosis, inflammation, and neuritic pathology. Microglia-specific Ifnar1 deletion attenuated the loss of post-synaptic terminals by selective engulfment, whereas neural Ifnar1 deletion restored pre-synaptic terminals and decreased plaque accumulation. Overall, IFN-I signaling represents a critical module within the neuroinflammatory network of AD and prompts concerted cellular states that are detrimental to memory and cognition.


An Oncogenic Alteration Creates a Microenvironment that Promotes Tumor Progression by Conferring a Metabolic Advantage to Regulatory T Cells.

  • Shogo Kumagai‎ et al.
  • Immunity‎
  • 2020‎

Only a small percentage of patients afflicted with gastric cancer (GC) respond to immune checkpoint blockade (ICB). To study the mechanisms underlying this resistance, we examined the immune landscape of GC. A subset of these tumors was characterized by high frequencies of regulatory T (Treg) cells and low numbers of effector T cells. Genomic analyses revealed that these tumors bore mutations in RHOA that are known to drive tumor progression. RHOA mutations in cancer cells activated the PI3K-AKT-mTOR signaling pathway, increasing production of free fatty acids that are more effectively consumed by Treg cells than effector T cells. RHOA mutant tumors were resistant to PD-1 blockade but responded to combination of PD-1 blockade with inhibitors of the PI3K pathway or therapies targeting Treg cells. We propose that the metabolic advantage conferred by RHOA mutations enables Treg cell accumulation within GC tumors, generating an immunosuppressive TME that underlies resistance to ICB.


Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus.

  • Scott A Jenks‎ et al.
  • Immunity‎
  • 2018‎

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: