Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Inhibitory effect of S-nitroso-N-acetylpenicillamine on the basolateral 10-pS Cl- channel in thick ascending limb.

  • Shiwei Ye‎ et al.
  • PloS one‎
  • 2023‎

We have previously reported that L-arginine, a nitric oxide synthase substrate, inhibits the basolateral 10-pS Cl- channel through the cGMP/PKG signaling pathway in the thick ascending limb (TAL). As a NO releasing agent, the effect of S-nitroso-N-acetyl-penicillamine (SNAP) on the channel activity was examined in thick ascending limb of C57BL/6 mice in the present study. SNAP inhibited the basolateral 10-pS Cl- channel in a dose-dependent manner with an IC50 value of 6.6 μM. The inhibitory effect of SNAP was abolished not only by NO scavenger (carboxy-PTIO) but also by blockers of soluble guanylate cyclase (ODQ or LY-83583), indicating that the cGMP-dependent signaling pathway is involved. Moreover, the inhibitory effect of SNAP on the channel was strongly attenuated by a protein kinase G (PKG)-specific inhibitor, KT-5823, but not by the PDE2 inhibitor, BAY-60-7550. We concluded that SNAP inhibited the basolateral 10-pS Cl- channels in the TAL through a cGMP/PKG signaling pathway. As the 10-pS Cl- channel is important for regulation of NaCl absorption along the nephron, these data suggest that SNAP might be served as a regulator to prevent high-salt absorption related diseases, such as hypertension.


QHREDGS enhances tube formation, metabolism and survival of endothelial cells in collagen-chitosan hydrogels.

  • Jason W Miklas‎ et al.
  • PloS one‎
  • 2013‎

Cell survival in complex, vascularized tissues, has been implicated as a major bottleneck in advancement of therapies based on cardiac tissue engineering. This limitation motivates the search for small, inexpensive molecules that would simultaneously be cardio-protective and vasculogenic. Here, we present peptide sequence QHREDGS, based upon the fibrinogen-like domain of angiopoietin-1, as a prime candidate molecule. We demonstrated previously that QHREDGS improved cardiomyocyte metabolism and mitigated serum starved apoptosis. In this paper we further demonstrate the potency of QHREDGS in its ability to enhance endothelial cell survival, metabolism and tube formation. When endothelial cells were exposed to the soluble form of QHREDGS, improvements in endothelial cell barrier functionality, nitric oxide production and cell metabolism (ATP levels) in serum starved conditions were found. The functionality of the peptide was then examined when conjugated to collagen-chitosan hydrogel, a potential carrier for in vivo application. The presence of the peptide in the hydrogel mitigated paclitaxel induced apoptosis of endothelial cells in a dose dependent manner. Furthermore, the peptide modified hydrogels stimulated tube-like structure formation of encapsulated endothelial cells. When integrin αvβ3 or α5β1 were antibody blocked during cell encapsulation in peptide modified hydrogels, tube formation was abolished. Therefore, the dual protective nature of the novel peptide QHREDGS may position this peptide as an appealing augmentation for collagen-chitosan hydrogels that could be used for biomaterial delivered cell therapies in the settings of myocardial infarction.


Trypacidin, a spore-borne toxin from Aspergillus fumigatus, is cytotoxic to lung cells.

  • Thierry Gauthier‎ et al.
  • PloS one‎
  • 2012‎

Inhalation of Aspergillus fumigatus conidia can cause severe aspergillosis in immunosuppressed people. A. fumigatus produces a large number of secondary metabolites, some of which are airborne by conidia and whose toxicity to the respiratory tract has not been investigated. We found that spores of A. fumigatus contain five main compounds, tryptoquivaline F, fumiquinazoline C, questin, monomethylsulochrin and trypacidin. Fractionation of culture extracts using RP-HPLC and LC-MS showed that samples containing questin, monomethylsulochrin and trypacidin were toxic to the human A549 lung cell line. These compounds were purified and their structure verified using NMR in order to compare their toxicity against A549 cells. Trypacidin was the most toxic, decreasing cell viability and triggering cell lysis, both effects occurring at an IC₅₀ close to 7 µM. Trypacidin toxicity was also observed in the same concentration range on human bronchial epithelial cells. In the first hour of exposure, trypacidin initiates the intracellular formation of nitric oxide (NO) and hydrogen peroxide (H₂O₂). This oxidative stress triggers necrotic cell death in the following 24 h. The apoptosis pathway, moreover, was not involved in the cell death process as trypacidin did not induce apoptotic bodies or a decrease in mitochondrial membrane potential. This is the first time that the toxicity of trypacidin to lung cells has been reported.


Nitroglycerin tolerance in caveolin-1 deficient mice.

  • Mao Mao‎ et al.
  • PloS one‎
  • 2014‎

Nitrate tolerance developed after persistent nitroglycerin (GTN) exposure limits its clinical utility. Previously, we have shown that the vasodilatory action of GTN is dependent on endothelial nitric oxide synthase (eNOS/NOS3) activity. Caveolin-1 (Cav-1) is known to interact with NOS3 on the cytoplasmic side of cholesterol-enriched plasma membrane microdomains (caveolae) and to inhibit NOS3 activity. Loss of Cav-1 expression results in NOS3 hyperactivation and uncoupling, converting NOS3 into a source of superoxide radicals, peroxynitrite, and oxidative stress. Therefore, we hypothesized that nitrate tolerance induced by persistent GTN treatment results from NOS3 dysfunction and vascular toxicity. Exposure to GTN for 48-72 h resulted in nitrosation and depletion (>50%) of Cav-1, NOS3 uncoupling as measured by an increase in peroxynitrite production (>100%), and endothelial toxicity in cultured cells. In the Cav-1 deficient mice, NOS3 dysfunction was accompanied by GTN tolerance (>50% dilation inhibition at low GTN concentrations). In conclusion, GTN tolerance results from Cav-1 modification and depletion by GTN that causes persistent NOS3 activation and uncoupling, preventing it from participating in GTN-medicated vasodilation.


Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy.

  • Akihiro Asai‎ et al.
  • PloS one‎
  • 2007‎

Duchenne Muscular Dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction: the state of functional ischemia. Until now, however, the cause-effect relationship between the pathogenesis of DMD and functional ischemia was unclear. We examined (i) whether functional ischemia is necessary to cause contraction-induced myofiber damage and (ii) whether functional ischemia alone is sufficient to induce the damage.


IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway.

  • Ioannis Vouldoukis‎ et al.
  • PloS one‎
  • 2011‎

In addition to helminthic infections, elevated serum IgE levels were observed in many protozoal infections, while their contribution during immune response to these pathogens remained unclear. As IgE/antigen immune complexes (IgE-IC) bind to human cells through FcεRI or FcεRII/CD23 surface molecules, the present study aimed to identify which functional receptor may be involved in IgE-IC interaction with human macrophages, the major effector cell during parasite infection.


Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats.

  • Belén Climent‎ et al.
  • PloS one‎
  • 2014‎

Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals.


(-)-Epigallocatechin-3-gallate protects against NO-induced ototoxicity through the regulation of caspase- 1, caspase-3, and NF-κB activation.

  • Su-Jin Kim‎ et al.
  • PloS one‎
  • 2012‎

Excessive nitric oxide (NO) production is toxic to the cochlea and induces hearing loss. However, the mechanism through which NO induces ototoxicity has not been completely understood. The aim of this study was to gain further insight into the mechanism mediating NO-induced toxicity in auditory HEI-OC1 cells and in ex vivo analysis. We also elucidated whether and how epigallocatechin-3-gallate (EGCG), the main component of green tea polyphenols, regulates NO-induced auditory cell damage. To investigate NO-mediated ototoxicity, S-nitroso-N-acetylpenicillamine (SNAP) was used as an NO donor. SNAP was cytotoxic, generating reactive oxygen species, releasing cytochrome c, and activating caspase-3 in auditory cells. NO-induced ototoxicity also mediated the nuclear factor (NF)-κB/caspase-1 pathway. Furthermore, SNAP destroyed the orderly arrangement of the 3 outer rows of hair cells in the basal, middle, and apical turns of the organ of Corti from the cochlea of Sprague-Dawley rats at postnatal day 2. However, EGCG counteracted this ototoxicity by suppressing the activation of caspase-3/NF-κB and preventing the destruction of hair cell arrays in the organ of Corti. These findings may lead to the development of a model for pharmacological mechanism of EGCG and potential therapies against ototoxicity.


Soil drench treatment with ß-aminobutyric acid increases drought tolerance of potato.

  • Anita Sós-Hegedűs‎ et al.
  • PloS one‎
  • 2014‎

The non-protein amino acid β-aminobutyric acid (BABA) is known to be a priming agent for a more efficient activation of cellular defence responses and a potent inducer of resistance against biotic and abiotic stresses in plants. Nevertheless, most of the studies on priming have been carried out in Arabidopsis. In potato, the effect of BABA was demonstrated only on biotic stress tolerance. We investigated the effect of BABA on the drought tolerance of potato and found that soil drenched with BABA at a final concentration of 0.3 mM improves the drought tolerance of potato. Water loss from the leaves of the primed plants is attenuated and the yield is increased compared to the unprimed drought-stressed plants. The metabolite composition of the tubers of the BABA-treated plants is less affected by drought than the tuber composition of the non-treated plants. Nitric oxide and ROS (reactive oxygen species) production is increased in the BABA-treated roots but not in the leaves. In the leaves of the BABA-treated plants, the expression of the drought-inducible gene StDS2 is delayed, but the expression of ETR1, encoding an ethylene receptor, is maintained for a longer period under the drought conditions than in the leaves of the non-treated, drought-stressed control plants. This result suggests that the ethylene-inducible gene expression remains suppressed in primed plants leading to a longer leaf life and increased tuber yield compared to the non-treated, drought-stressed plants. The priming effect of BABA in potato, however, is transient and reverts to an unprimed state within a few weeks.


Protection by Nitric Oxide Donors of Isolated Rat Hearts Is Associated with Activation of Redox Metabolism and Ferritin Accumulation.

  • Hilbert Grievink‎ et al.
  • PloS one‎
  • 2016‎

Preconditioning (PC) procedures (ischemic or pharmacological) are powerful procedures used for attaining protection against prolonged ischemia and reperfusion (I/R) injury, in a variety of organs, including the heart. The detailed molecular mechanisms underlying the protection by PC are however, complex and only partially understood. Recently, an 'iron-based mechanism' (IBM), that includes de novo ferritin synthesis and accumulation, was proposed to explain the specific steps in cardioprotection generated by IPC. The current study investigated whether nitric oxide (NO), generated by exogenous NO-donors, could play a role in the observed IBM of cardioprotection by IPC. Therefore, three distinct NO-donors were investigated at different concentrations (1-10 μM): sodium nitroprusside (SNP), 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). Isolated rat hearts were retrogradely perfused using the Langendorff configuration and subjected to prolonged ischemia and reperfusion with or without pretreatment by NO-donors. Hemodynamic parameters, infarct sizes and proteins of the methionine-centered redox cycle (MCRC) were analyzed, as well as cytosolic aconitase (CA) activity and ferritin protein levels. All NO-donors had significant effects on proteins involved in the MCRC system. Nonetheless, pretreatment with 10 μM SNAP was found to evoke the strongest effects on Msr activity, thioredoxin and thioredoxin reductase protein levels. These effects were accompanied with a significant reduction in infarct size, increased CA activity, and ferritin accumulation. Conversely, pretreatment with 2 μM SIN-1 increased infarct size and was associated with slightly lower ferritin protein levels. In conclusion, the abovementioned findings indicate that NO, depending on its bio-active redox form, can regulate iron metabolism and plays a role in the IBM of cardioprotection against reperfusion injury.


Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis.

  • Susanne Herbst‎ et al.
  • PloS one‎
  • 2011‎

Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis.


Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization.

  • Fernando Toshio Ogata‎ et al.
  • PloS one‎
  • 2013‎

Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras-ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H₂O₂, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.


Abl family kinases regulate endothelial barrier function in vitro and in mice.

  • Elizabeth M Chislock‎ et al.
  • PloS one‎
  • 2013‎

The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg), as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR), Kit, colony stimulating factor 1 receptor (CSF1R), and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca(2+) mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use of Abl kinase inhibitors may have potential for the treatment of disorders involving pathological vascular leakage.


Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1.

  • Ryo Nasuno‎ et al.
  • PloS one‎
  • 2014‎

The budding yeast Saccharomyces cerevisiae possesses various defense mechanisms against environmental stresses that generate reactive oxygen species, leading to growth inhibition or cell death. Our recent study showed a novel antioxidative mechanism mediated by nitric oxide (NO) in yeast cells, but the mechanism underlying the oxidative stress tolerance remained unclear. We report here one of the downstream pathways of NO involved in stress-tolerance mechanism in yeast. Our microarray and real-time quantitative PCR analyses revealed that exogenous NO treatment induced the expression of genes responsible for copper metabolism under the control of the transcription factor Mac1, including the CTR1 gene encoding high-affinity copper transporter. Our ChIP analysis also demonstrated that exogenous NO enhances the binding of Mac1 to the promoter region of target genes. Interestingly, we found that NO produced under high-temperature stress conditions increased the transcription level of the CTR1 gene. Furthermore, NO produced during exposure to high temperature also increased intracellular copper content, the activity of Cu,Zn-superoxide dismutase Sod1, and cell viability after exposure to high-temperature in a manner dependent on Mac1. NO did not affect the expression of the MAC1 gene, indicating that NO activates Mac1 through its post-translational modification. Based on the results shown here, we propose a novel NO-mediated antioxidative mechanism that Mac1 activated by NO induces the CTR1 gene, leading to an increase in cellular copper level, and then Cu(I) activates Sod1. This is the first report to unveil the mechanism of NO-dependent antioxidative system in yeast.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: