Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,754 papers

Lurking in the shadows: emerging rodent infectious diseases.

  • David G Besselsen‎ et al.
  • ILAR journal‎
  • 2008‎

Rodent parvoviruses, Helicobacter spp., murine norovirus, and several other previously unknown infectious agents have emerged in laboratory rodents relatively recently. These agents have been discovered serendipitously or through active investigation of atypical serology results, cell culture contamination, unexpected histopathology, or previously unrecognized clinical disease syndromes. The potential research impact of these agents is not fully known. Infected rodents have demonstrated immunomodulation, tumor suppression, clinical disease (particularly in immunodeficient rodents), and histopathology. Perturbations of organismal and cellular physiology also likely occur. These agents posed unique challenges to laboratory animal resource programs once discovered; it was necessary to develop specific diagnostic assays and an understanding of their epidemiology and transmission routes before attempting eradication, and then evaluate eradication methods for efficacy. Even then management approaches varied significantly, from apathy to total exclusion, and such inconsistency has hindered the sharing and transfer of rodents among institutions, particularly for genetically modified rodent models that may not be readily available. As additional infectious agents are discovered in laboratory rodents in coming years, much of what researchers have learned from experiences with the recently identified pathogens will be applicable. This article provides an overview of the discovery, detection, and research impact of infectious agents recently identified in laboratory rodents. We also discuss emerging syndromes for which there is a suspected infectious etiology, and the unique challenges of managing newly emerging infectious agents.


Rodent-borne diseases and their public health importance in Iran.

  • Mohammad Hasan Rabiee‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran.


Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases.

  • Erik Nutma‎ et al.
  • Nature communications‎
  • 2023‎

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases.

  • Lucila Brocardo‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

A variety of glial cell functions are supported by connexin and pannexin proteins. These functions include the modulation of synaptic gain, the control of excitability through regulation of the ion and neurotransmitter composition of the extracellular milieu and the promotion of neuronal survival. Connexins and pannexins support these functions through diverse molecular mechanisms, including channel and non-channel functions. The former comprise the formation of gap junction-mediated networks supported by connexin intercellular channels and the formation of pore-like membrane structures or hemichannels formed by both connexins and pannexins. Non-channel functions involve adhesion properties and the participation in signaling intracellular cascades. Pathological conditions of the nervous system such as ischemia, neurodegeneration, pathogen infection, trauma and tumors are characterized by distinctive remodeling of connexin expression and function. However, whether these changes can be interpreted as part of the pathogenesis, or as beneficial compensatory effects, remains under debate. Here we review the available evidence addressing this matter with a special emphasis in mouse models with selective manipulation of glial connexin and pannexin proteins in vivo. We postulate that the beneficial vs. detrimental effects of glial connexin remodeling in pathological conditions depend on the impact of remodeling on the different connexin and pannexin channel and non-channel functions, on the characteristics of the inflammatory environment and on the type of interaction among glial cells types.


Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases.

  • Zhiqiang Wu‎ et al.
  • Microbiome‎
  • 2018‎

Rodents represent around 43% of all mammalian species, are widely distributed, and are the natural reservoirs of a diverse group of zoonotic viruses, including hantaviruses, Lassa viruses, and tick-borne encephalitis viruses. Thus, analyzing the viral diversity harbored by rodents could assist efforts to predict and reduce the risk of future emergence of zoonotic viral diseases.


Rodent Arena Tracker (RAT): A Machine Vision Rodent Tracking Camera and Closed Loop Control System.

  • Jonathan Krynitsky‎ et al.
  • eNeuro‎
  • 2020‎

Video tracking is an essential tool in rodent research. Here, we demonstrate a machine vision rodent tracking camera based on a low-cost, open-source, machine vision camera, the OpenMV Cam M7. We call our device the rodent arena tracker (RAT), and it is a pocket-sized machine vision-based position tracker. The RAT does not require a tethered computer to operate and costs about $120 per device to build. These features make the RAT scalable to large installations and accessible to research institutions and educational settings where budgets may be limited. The RAT processes incoming video in real-time at 15 Hz and saves x and y positional information to an onboard microSD card. The RAT also provides a programmable multi-function input/output pin that can be used for controlling other equipment, transmitting tracking information in real time, or receiving data from other devices. Finally, the RAT includes a real-time clock (RTC) for accurate time stamping of data files. Real-time image processing averts the need to save video, greatly reducing storage, data handling, and communication requirements. To demonstrate the capabilities of the RAT, we performed three validation studies: (1) a 4-d experiment measuring circadian activity patterns; (2) logging of mouse positional information alongside status information from a pellet dispensing device; and (3) control of an optogenetic stimulation system for a real-time place preference (RTPP) brain stimulation reinforcement study. Our design files, build instructions, and code for the RAT implementation are open source and freely available online to facilitate dissemination and further development of the RAT.


Rodent Activity Detector (RAD), an Open Source Device for Measuring Activity in Rodent Home Cages.

  • Bridget A Matikainen-Ankney‎ et al.
  • eNeuro‎
  • 2019‎

Physical activity is a critical behavioral variable in many research studies and is, therefore, important to quantify. However, existing methods for measuring physical activity have limitations which include high expense, specialized caging or equipment, and high computational overhead. To address these limitations, we present an open-source, cost-effective, device for measuring rodent activity. Our device is battery powered and designed to be placed in vivarium home cages to enable high-throughput, long-term operation with minimal investigator intervention. The primary aim of this study was to assess the feasibility of using passive infrared (PIR) sensors and microcontroller-based dataloggers in a rodent home cages to collect physical activity records. To this end, we developed an open-source PIR based data-logging device called the rodent activity detector (RAD). We publish the design files and code so others can readily build the RAD in their own labs. To demonstrate its utility, we used the RAD to collect physical activity data from 40 individually housed mice for up to 10 weeks. This dataset demonstrates the ability of the RAD to (1) operate in a high-throughput installation, (2) detect high-fat diet (HFD)-induced changes in physical activity, and (3) quantify circadian rhythms in individual animals. We further validated the data output of the RAD with simultaneous video tracking of mice in multiple caging configurations, to determine the features of physical activity that it detects. The RAD is easy to build, economical, and fits in vivarium caging. The scalability of such devices will enable high-throughput studies of physical activity in research studies.


Identifying rodent hantavirus reservoirs, Brazil.

  • Akemi Suzuki‎ et al.
  • Emerging infectious diseases‎
  • 2004‎

We describe the genetic analysis of samples from hantavirus pulmonary syndrome (HPS) patients from southern and southeastern states of Brazil and rodents captured at the presumed site of infection of these patients. A total of 65 samples that were antibody-positive for Sin Nombre or Laguna Negra virus by enzyme-linked immunosorbent assay were processed by nested reverse transcription-polymerase chain reaction (RT-PCR) by using several primer combinations in the M and S genome segments. PCR products were amplified and sequenced from samples from 11 HPS patient and 7 rodent samples. Phylogenetic analysis of nucleotide sequence differences showed the cocirculation of Araraquara and Juquitiba-like viruses, previously characterized from humans. Our genetic data indicate that Araraquara virus is associated with Bolomys lasiurus (hairy-tailed Bolo mouse) and the Juquitiba-like virus is associated with Oligoryzomys nigripes (black-footed pigmy rice rat).


A Curated Database of Rodent Uterotrophic Bioactivity.

  • Nicole C Kleinstreuer‎ et al.
  • Environmental health perspectives‎
  • 2016‎

Novel in vitro methods are being developed to identify chemicals that may interfere with estrogen receptor (ER) signaling, but the results are difficult to put into biological context because of reliance on reference chemicals established using results from other in vitro assays and because of the lack of high-quality in vivo reference data. The Organisation for Economic Co-operation and Development (OECD)-validated rodent uterotrophic bioassay is considered the "gold standard" for identifying potential ER agonists.


Experimental Injury Rodent Models for Oropharyngeal Dysphagia.

  • Ji-Youn Kim‎
  • Biology‎
  • 2021‎

Oropharyngeal dysphagia is a disorder that can make swallowing difficult and reduce the quality of life. Recently, the number of patients with swallowing difficulty has been increasing; however, no comprehensive treatment for such patients has been developed. Various experimental animal models that mimic oropharyngeal dysphagia have been developed to identify appropriate treatments. This review aims to summarize the experimentally induced oropharyngeal dysphagia rodent models that can be used to provide a pathological basis for dysphagia. The selected studies were classified into those reporting dysphagia rodent models showing lingual paralysis by hypoglossal nerve injury, facial muscle paralysis by facial nerve injury, laryngeal paralysis by laryngeal and vagus nerve injury, and tongue dysfunction by irradiation of the head and neck regions. The animals used in each injury model, the injury method that induced dysphagia, the screening method for dysphagia, and the results are summarized. The use of appropriate animal models of dysphagia may provide adequate answers to biological questions. This review can help in selecting a dysphagia animal system tailored for the purpose of providing a possible solution to overcome dysphagia.


Rodent-borne infections in rural Ghanaian farming communities.

  • Shirley C Nimo-Paintsil‎ et al.
  • PloS one‎
  • 2019‎

Rodents serve as reservoirs and/or vectors for several human infections of high morbidity and mortality in the tropics. Population growth and demographic shifts over the years have increased contact with these mammals, thereby increasing opportunities for disease transmission. In Africa, the burden of rodent-borne diseases is not well described. To investigate human seroprevalence of selected rodent-borne pathogens, sera from 657 healthy adults in ten rural communities in Ghana were analyzed. An in-house enzyme-linked immunosorbent assay (ELISA), for immunoglobulin G (IgG) antibodies to Lassa virus was positive in 34 (5%) of the human samples. Using commercial kits, antibodies to hantavirus serotypes, Puumala and Dobrava, and Leptospira bacteria were detected in 11%, 12% and 21% of the human samples, respectively. Forty percent of residents in rural farming communities in Ghana have measurable antibodies to at least one of the rodent-borne pathogens tested, including antibodies to viral hemorrhagic fever viruses. The high seroprevalence found in rural Ghana to rodent-borne pathogens associated with both sporadic cases and larger disease outbreaks will help define disease threats and inform public health policy to reduce disease burden in underserved populations and deter larger outbreaks.


Rodent-Borne Orthohantaviruses in Vietnam, Madagascar and Japan.

  • Fuka Kikuchi‎ et al.
  • Viruses‎
  • 2021‎

Hantaviruses are harbored by multiple small mammal species in Asia, Europe, Africa, and the Americas. To ascertain the geographic distribution and virus-host relationships of rodent-borne hantaviruses in Japan, Vietnam, Myanmar, and Madagascar, RNAlater™-preserved lung tissues of 981 rodents representing 40 species, collected in 2011-2017, were analyzed for hantavirus RNA by RT-PCR. Our data showed Hantaan orthohantavirus Da Bie Shan strain in the Chinese white-bellied rat (Niviventer confucianus) in Vietnam, Thailand; orthohantavirus Anjo strain in the black rat (Rattus rattus) in Madagascar; and Puumala orthohantavirus Hokkaido strain in the grey-sided vole (Myodes rufocanus) in Japan. The Hokkaido strain of Puumala virus was also detected in the large Japanese field mouse (Apodemus speciosus) and small Japanese field mouse (Apodemus argenteus), with evidence of host-switching as determined by co-phylogeny mapping.


Rodent-associated Bartonella febrile illness, Southwestern United States.

  • Jonathan Iralu‎ et al.
  • Emerging infectious diseases‎
  • 2006‎

Serum specimens from 114 patients hospitalized with a febrile illness were tested with an indirect immunofluorescence assay (IFA) using Bartonella antigens prepared from 6 species of sigmodontine rodents and 3 known human Bartonella pathogens: B. henselae, B. quintana, and B. elizabethae. Acute- and convalescent-phase serum samples from 5 of these patients showed seroconversion with an IFA titer >512 to rodent-associated Bartonella antigens. The highest titer was against antigen derived from the white-throated woodrat (Neotoma albigula), although this rodent is not necessarily implicated as the source of infection. Three of the 5 who seroconverted showed no cross-reaction to the 3 Bartonella human pathogens. Common clinical characteristics were fever, chills, myalgias, leukopenia, thrombocytopenia, and transaminasemia. Although antibodies to Bartonella are cross-reactive, high-titer seroconversions to rodent-associated Bartonella antigens in adults with common clinical characteristics should stimulate the search for additional Bartonella human pathogens.


Shared Common Ancestry of Rodent Alphacoronaviruses Sampled Globally.

  • Theocharis Tsoleridis‎ et al.
  • Viruses‎
  • 2019‎

The recent discovery of novel alphacoronaviruses (alpha-CoVs) in European and Asian rodents revealed that rodent coronaviruses (CoVs) sampled worldwide formed a discrete phylogenetic group within this genus. To determine the evolutionary history of rodent CoVs in more detail, particularly the relative frequencies of virus-host co-divergence and cross-species transmission, we recovered longer fragments of CoV genomes from previously discovered European rodent alpha-CoVs using a combination of PCR and high-throughput sequencing. Accordingly, the full genome sequence was retrieved from the UK rat coronavirus, along with partial genome sequences from the UK field vole and Poland-resident bank vole CoVs, and a short conserved ORF1b fragment from the French rabbit CoV. Genome and phylogenetic analysis showed that despite their diverse geographic origins, all rodent alpha-CoVs formed a single monophyletic group and shared similar features, such as the same gene constellations, a recombinant beta-CoV spike gene, and similar core transcriptional regulatory sequences (TRS). These data suggest that all rodent alpha CoVs sampled so far originate from a single common ancestor, and that there has likely been a long-term association between alpha CoVs and rodents. Despite this likely antiquity, the phylogenetic pattern of the alpha-CoVs was also suggestive of relatively frequent host-jumping among the different rodent species.


Distribution and characteristics of rodent picornaviruses in China.

  • Jiang Du‎ et al.
  • Scientific reports‎
  • 2016‎

Rodents are important reservoir hosts of many important zoonotic viruses. The family Picornaviridae contains clinically important pathogens that infect humans and animals, and increasing numbers of rodent picornaviruses have recently been associated with zoonoses. We collected 574 pharyngeal and anal swab specimens from 287 rodents of 10 different species from eight representative regions of China from October 2013 to July 2015. Seven representative sequences identified from six rodent species were amplified as full genomes and classified into four lineages. Three lineage 1 viruses belonged to a novel genus of picornaviruses and was more closely related to Hepatovirus than to others genera of picornaviruses based on aa homology. Lineage 2, lineage 3, and lineage 4 viruses belonged to the genera Rosavirus, Hunnivirus, and Enterovirus, respectively, representing new species. According to both phylogenetic and identity analyses, Lineage 2 viruses had a close relationship with rosavirus 2 which was recovered from the feces of a child in Gambia and Lineage 3 viruses had a close relationship with domestic animal Hunnivirus. Lineage 4 viruses provide the first evidence of these enteroviruses and their evolution in rodent hosts in China.


Single rodent mesohabenular axons release glutamate and GABA.

  • David H Root‎ et al.
  • Nature neuroscience‎
  • 2014‎

The lateral habenula (LHb) is involved in reward, aversion, addiction and depression through descending interactions with several brain structures, including the ventral tegmental area (VTA). The VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb coexpress markers for both glutamate signaling (vesicular glutamate transporter 2; VGluT2) and GABA signaling (glutamic acid decarboxylase; GAD, and vesicular GABA transporter; VGaT). A single axon from these mesohabenular neurons coexpresses VGluT2 protein and VGaT protein and, surprisingly, establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin2 driven by VGluT2 (Slc17a6) or VGaT (Slc32a1) promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that cotransmits glutamate and GABA and provides the majority of mesohabenular inputs.


The Open Source GAITOR Suite for Rodent Gait Analysis.

  • Brittany Y Jacobs‎ et al.
  • Scientific reports‎
  • 2018‎

Locomotive changes are often associated with disease or injury, and these changes can be quantified through gait analysis. Gait analysis has been applied to preclinical studies, providing quantitative behavioural assessment with a reasonable clinical analogue. However, available gait analysis technology for small animals is somewhat limited. Furthermore, technological and analytical challenges can limit the effectiveness of preclinical gait analysis. The Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) Suite is designed to increase the accessibility of preclinical gait analysis to researchers, facilitating hardware and software customization for broad applications. Here, the GAITOR Suite's utility is demonstrated in 4 models: a monoiodoacetate (MIA) injection model of joint pain, a sciatic nerve injury model, an elbow joint contracture model, and a spinal cord injury model. The GAITOR Suite identified unique compensatory gait patterns in each model, demonstrating the software's utility for detecting gait changes in rodent models of highly disparate injuries and diseases. Robust gait analysis may improve preclinical model selection, disease sequelae assessment, and evaluation of potential therapeutics. Our group has provided the GAITOR Suite as an open resource to the research community at www.GAITOR.org , aiming to promote and improve the implementation of gait analysis in preclinical rodent models.


Lentiviral vector integration profiles differ in rodent postmitotic tissues.

  • Cynthia C Bartholomae‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2011‎

Lentiviral vectors with self-inactivating (SIN) long terminal repeats (LTRs) are promising for safe and sustained transgene expression in dividing as well as quiescent cells. As genome organization and transcription substantially differs between actively dividing and postmitotic cells in vivo, we hypothesized that genomic vector integration preferences might be distinct between these biological states. We performed integration site (IS) analyses on mouse dividing cells (fibroblasts and hematopoietic progenitor cells (HPCs)) transduced ex vivo and postmitotic cells (eye and brain) transduced in vivo. As expected, integration in dividing cells occurred preferably into gene coding regions. In contrast, postmitotic cells showed a close to random frequency of integration into genes and gene spare long interspersed nuclear elements (LINE). Our studies on the potential mechanisms responsible for the detected differences of lentiviral integration suggest that the lowered expression level of Psip1 reduce the integration frequency in vivo into gene coding regions in postmitotic cells. The motif TGGAA might represent one of the factors for preferred lentiviral integration into mouse and rat Satellite DNA. These observations are highly relevant for the correct assessment of preclinical biosafety studies, indicating that lentiviral vectors are well suited for safe and effective clinical gene transfer into postmitotic tissues.


Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia.

  • Zhiqiang Wu‎ et al.
  • Microbiome‎
  • 2021‎

As the largest group of mammalian species, which are also widely distributed all over the world, rodents are the natural reservoirs for many diverse zoonotic viruses. A comprehensive understanding of the core virome of diverse rodents should therefore assist in efforts to reduce the risk of future emergence or re-emergence of rodent-borne zoonotic pathogens.


Juquitiba-like hantavirus from 2 nonrelated rodent species, Uruguay.

  • Adriana Delfraro‎ et al.
  • Emerging infectious diseases‎
  • 2008‎

Serologic and genetic analyses indicate that a Juquitiba-like hantavirus circulates in Maldonado, Uruguay. This virus is carried by 2 rodent species, Oligoryzomys nigripes and Oxymycterus nasutus. The same hantavirus in 2 nonrelated species can be explained by a spillover infection or a host-switching event.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: