Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

SOX17-positive rete testis epithelium is required for Sertoli valve formation and normal spermiogenesis in the male mouse.

  • Aya Uchida‎ et al.
  • Nature communications‎
  • 2022‎

Seminiferous tubules (STs) in the mammalian testes are connected to the rete testis (RT) via a Sertoli valve (SV). Spermatozoa produced in the STs are released into the tubular luminal fluid and passively transported through the SV into the RT. However, the physiological functions of the RT and SV remain unclear. Here, we identified the expression of Sox17 in RT epithelia. The SV valve was disrupted before puberty in RT-specific Sox17 conditional knockout (Sox17-cKO) male mice. This induced a backflow of RT fluid into the STs, which caused aberrant detachment of immature spermatids. RT of Sox17-cKO mice had reduced expression levels of various growth factor genes, which presumably support SV formation. When transplanted next to the Sox17+ RT, Sertoli cells of Sox17-cKO mice reconstructed the SV and supported proper spermiogenesis in the STs. This study highlights the novel and unexpected modulatory roles of the RT in SV valve formation and spermatogenesis in mouse testes, as a downstream action of Sox17.


Low retinoic acid levels mediate regionalization of the Sertoli valve in the terminal segment of mouse seminiferous tubules.

  • Kasane Imura-Kishi‎ et al.
  • Scientific reports‎
  • 2021‎

In mammalian testes, undifferentiated spermatogonia (Aundiff) undergo differentiation in response to retinoic acid (RA), while their progenitor states are partially maintained by fibroblast growth factors (FGFs). Sertoli valve (SV) is a region located at the terminal end of seminiferous tubule (ST) adjacent to the rete testis (RT), where the high density of Aundiff is constitutively maintained with the absence of active spermatogenesis. However, the molecular and cellular characteristics of SV epithelia still remain unclear. In this study, we first identified the region-specific AKT phosphorylation in the SV Sertoli cells and demonstrated non-cell autonomous specialization of Sertoli cells in the SV region by performing a Sertoli cell ablation/replacement experiment. The expression of Fgf9 was detected in the RT epithelia, while the exogenous administration of FGF9 caused ectopic AKT phosphorylation in the Sertoli cells of convoluted ST. Furthermore, we revealed the SV region-specific expression of Cyp26a1, which encodes an RA-degrading enzyme, and demonstrated that the increased RA levels in the SV region disrupt its pool of Aundiff by inducing their differentiation. Taken together, RT-derived FGFs and low levels of RA signaling contribute to the non-cell-autonomous regionalization of the SV epithelia and its local maintenance of Aundiff in the SV region.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: