Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Development of novel long noncoding RNA MALAT1 near-infrared optical probes for in vivo tumour imaging.

  • Meng-Jie Dong‎ et al.
  • Oncotarget‎
  • 2017‎

With the advent of next-generation sequencing technology, there is rapidly increasing interest in long noncoding RNAs (lncRNAs). The objectives of this study were to develop a novel lncRNA MALAT1 near-infrared optical probe, to evaluate the characteristics of this optical imaging probe in vitro and to determine whether it can be used for imaging MALAT1 expression in malignant tumours in vivo. Conjugation of Cy5.5 to MALAT1 ASO was accomplished using standard NHS (N-hydroxysuccinimide) ester procedures, and the labelled MALAT1 ASO was purified with a Glen-Pak DNA Purification Cartridge and reversed-phase high performance liquid chromatography (HPLC). The in vitro cellular uptake results showed that the percentage of cell binding increased with an increasing final concentration and increased with increasing incubation time for the MHCC-LM3 tumour cell flow cytometry analyses. in vivo optical imaging exhibited 5' (Cy5.5)-MALAT1 ASO uptake in the tumour with a maximum at 30 min p.i. that slowly washed out over time. High contrast to normal tissue was gradually observed from 4 h to 48 h p.i. Tumour-to-normal ratios of fluorescence intensities were plotted as a function of time. The in vivo competition assay showed little uptake of the probe into the tumours at any time point, indicating effective competition, selectivity of probe binding and retention by tumours in vivo. Our proposed Cy5.5 labelling of MALAT1 ASO can serve as a potent optical probe for in vivo imaging of tumour expressing MALAT1. Importantly, the successful development of optical probes provides a basis for specific molecular diagnoses in the field of lncRNAs.


Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling.

  • Su-Ren Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Sertoli cells, the primary somatic cell in the seminiferous epithelium, provide the spermatogonial stem cell (SSC) microenvironment (niche) through physical support and the expression of paracrine factors. However, the regulatory mechanisms within the SSC niche, which is primarily controlled by Sertoli cells, remain largely unknown. GATA4 is a Sertoli cell marker, involved in genital ridge initiation, sex determination and differentiation during the embryonic stage. Here, we showed that neonatal mice with a targeted disruption of Gata4 in Sertoli cells (Gata4(flox/flox); Amh-Cre; hereafter termed Gata4 cKO) displayed a loss of the establishment and maintenance of the SSC pool and apoptosis of both gonocyte-derived differentiating spermatogonia and meiotic spermatocytes. Thus, progressive germ cell depletion and a Sertoli-cell-only syndrome were observed as early as the first wave of murine spermatogenesis. Transplantation of germ cells from postnatal day 5 (P5) Gata4 cKO mice into Kit(W/W-v) recipient seminiferous tubules restored spermatogenesis. In addition, microarray analyses of P5 Gata4 cKO mouse testes showed alterations in chemokine signaling factors, including Cxcl12, Ccl3, Cxcr4 (CXCL12 receptor), Ccr1 (CCL3 receptor), Ccl9, Xcl1 and Ccrl2. Deletion of Gata4 in Sertoli cells markedly attenuated Sertoli cell chemotaxis, which guides SSCs or prospermatogonia to the stem cell niche. Finally, we showed that GATA4 transcriptionally regulated Cxcl12 and Ccl9, and the addition of CXCL12 and CCL9 to an in vitro testis tissue culture system increased the number of PLZF+ undifferentiated spermatogonia within Gata4 cKO testes. Together, these results reveal a novel role for GATA4 in controlling the SSC niche via the transcriptional regulation of chemokine signaling shortly after birth.


Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling.

  • Su-Ren Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Spermatogenesis does not progress beyond the pachytene stages of meiosis in Sertoli cell-specific AR knockout (SCARKO) mice. However, further evidence of meiotic arrest and underlying paracrine signals in SCARKO testes is still lacking. We utilized co-immunostaining of meiotic surface spreads to examine the key events during meiotic prophase I. SCARKO spermatocytes exhibited a failure in chromosomal synapsis observed by SCP1/SCP3 double-staining and CREST foci quantification. In addition, DNA double-strand breaks (DSBs) were formed but were not repaired in the mutant spermatocytes, as revealed by γ-H2AX staining and DNA-dependent protein kinase (DNA-PK) activity examination. The later stages of DSB repair, such as the accumulation of the RAD51 strand exchange protein and the localization of mismatch repair protein MLH1, were correspondingly altered in SCARKO spermatocytes. Notably, the expression of factors that guide RAD51 loading onto sites of DSBs, including TEX15, BRCA1/2 and PALB2, was severely impaired when either AR was down-regulated or EGF was up-regulated. We observed that some ligands in the epidermal growth factor (EGF) family were over-expressed in SCARKO Sertoli cells and that some receptors in the EGF receptor (EGFR) family were ectopically activated in the mutant spermatocytes. When EGF-EGFR signaling was repressed to approximately normal by the specific inhibitor AG1478 in the cultured SCARKO testis tissues, the arrested meiosis was partially rescued, and functional haploid cells were generated. Based on these data, we propose that AR in Sertoli cells regulates DSB repair and chromosomal synapsis of spermatocytes partially through proper intercellular EGF-EGFR signaling.


Protein inhibitor of activated STAT 4 (PIAS4) regulates pro-inflammatory transcription in hepatocytes by repressing SIRT1.

  • Lina Sun‎ et al.
  • Oncotarget‎
  • 2016‎

Excessive nutrition promotes the pathogenesis of non-alcoholic steatohepatitis (NASH), characterized by the accumulation of pro-inflammation mediators in the liver. In the present study we investigated the regulation of pro-inflammatory transcription in hepatocytes by protein inhibitor of activated STAT 4 (PIAS4) in this process and the underlying mechanisms. We report that expression of the class III deacetylase SIRT1 was down-regulated in the livers of NASH mice accompanied by a simultaneous increase in the expression and binding activity of PIAS4. Exposure to high glucose stimulated the expression PIAS4 in cultured hepatocytes paralleling SIRT1 repression. Estrogen, a known NASH-protective hormone, ameliorated SIRT1 trans-repression by targeting PIAS4. Over-expression of PIAS4 enhanced, while PIAS4 knockdown alleviated, repression of SIRT1 transcription by high glucose. Lentiviral delivery of short hairpin RNA (shRNA) targeting PIAS4 attenuated hepatic inflammation in NASH mice by restoring SIRT1 expression. Mechanistically, PIAS4 promoted NF-κB-mediated pro-inflammatory transcription in a SIRT1 dependent manner. In conclusion, our study indicates that PIAS4 mediated SIRT1 repression in response to nutrient surplus contributes to the pathogenesis of NASH. Therefore, targeting PIAS4 might provide novel therapeutic strategies in the intervention of NASH.


Renal tubular epithelium-targeted peroxisome proliferator-activated receptor-γ maintains the epithelial phenotype and antagonizes renal fibrogenesis.

  • Min Zhao‎ et al.
  • Oncotarget‎
  • 2016‎

Accumulating evidence suggests that loss of the renal tubular epithelial phenotype plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. Systemic activation of peroxisome proliferator-activated receptor γ (PPAR-γ) has been shown to be protective against renal fibrosis, although the mechanisms are poorly understood. The present study aimed to define the role of renal tubular epithelium-targeted PPAR-γ in protection of the epithelial phenotype and the antagonism of renal fibrosis and to define the underlying mechanisms. In response to TGF-β1 challenge, PPAR-γ expression and activity in the renal proximal tubule epithelial cells (RPTECs) were significantly reduced, and the reduction was accompanied by decreased E-cadherin and elevated α-SMA, indicating a loss of the epithelial phenotype. Oxidative stress induced by TGF-β1 was shown to be attributed to the alteration of the epithelial phenotype and PPAR-γ inhibition. Activation of PPAR-γ by its agonists of rosiglitazone and 15d-PGJ2 or genetic overexpression of PPAR-γ prevented the loss of the epithelial phenotype induced by TGF-β1 in line with the inhibition of oxidative stress. To explore the role of PPAR-γ in renal tubular epithelial in antagonizing fibrogenesis, PPAR-γ was specifically deleted from RPTECs in mice. Following unilateral ureteral obstruction, the fibrosis was markedly deteriorated in mice with PPAR-γ invalidation in RPTECs. Treatment with rosiglitazone attenuated tubulointerstitial fibrosis and epithelial phenotype transition in WT but not proximal tubule PPAR-γ KO mice. Taken together, these findings identified an important role of renal tubular epithelium-targeted PPAR-γ in maintaining the normal epithelial phenotype and opposing fibrogenesis, possibly via antagonizing oxidative stress.


High CFTR expression in Philadelphia chromosome-positive acute leukemia protects and maintains continuous activation of BCR-ABL and related signaling pathways in combination with PP2A.

  • Xi Yang‎ et al.
  • Oncotarget‎
  • 2017‎

Cystic fibrosis transmembrane conductance regulator (CFTR) is classified as an anion channel transporter of Cl- and HCO3-. Through interactions with its PDZ domain, CFTR is capable of regulating other proteins, such as protein phosphatase 2A (PP2A). The aberrant expression and mutation of CFTR have been observed in several tumor, but not in philadelphia chromosome-positive(Ph+) acute leukemia, including Ph+ B cell acute lymphoblastic leukemia(Ph+ B-ALL) and chronic myelogenous leukemia blast crisis phases (CML-BC). In this study, we demonstrated the mean expression level of CFTR in Ph+ acute leukemia cells was markedly higher than that in Ph- B-ALL and CML-chronic phase cells. CFTRinh-172, a classic CFTR inhibitor, down-regulated the expression of CFTR, p-BCR-ABL and classical Wnt/β-catenin signaling in Ph+ acute leukemia cells, while imatinib had no effect on CFTR. Importantly, reduced efficacy of CFTRinh-172 was closely associated with elevated PP2A phosphatase activity. Furthermore, we confirmed an interaction between CFTR and the PP2AA subunit in K562 cells. In addition, we demonstrated CFTR and PP2AA interact in the cytosol, resulting in PP2A complex inactivation and increased degradation of PP2A substrates via the lysosomal/proteasome pathway. In conclusion, our results showed CFTR was highly expressed in Ph+ acute leukemia, which protected and maintained the continuous activation of BCR-ABL and the canonical Wnt/β-catenin signaling pathway by decreasing PP2A phosphatase activity. According to this working model of the CFTR-PP2A-BCR-ABL axis, targeting the CFTR protein will activate PP2A and may offer a new treatment strategy for Ph+ acute leukemia, especially for patients exhibiting high levels of CFTR expression.


Therapeutically blocking Interleukin-11 Receptor-α enhances doxorubicin cytotoxicity in high grade type I endometrioid tumours.

  • Amy Winship‎ et al.
  • Oncotarget‎
  • 2017‎

High grade type I endometrial cancers have poor prognosis. Interleukin (IL)11 is elevated in tumours and uterine lavage with increasing tumour grade in women. IL11 regulates cell cycle, invasion and migration and we recently demonstrated that IL11 receptor (R)α inhibition impaired low and moderate grade endometrial tumourigenesis in vivo. In this report, we hypothesized that micro-RNA(miR)-1 regulates IL11 and that IL11 promotes high grade endometrial tumour growth. We aimed to determine whether combination treatment using an anti-human IL11Rα blocking antibody (Ab) and doxorubicin chemotherapeutic impairs high grade tumour growth. MiR-1 was absent in human endometrial tumours versus human benign endometrium (n = 10/group). Transfection with miR-1 mimic restored miR-1 expression, down-regulated IL11 mRNA and impaired cell viability in grade 3-derived AN3CA human endometrial epithelial cancer cells. AN3CA cell proliferation was reduced in response to Ab and doxorubicin combination treatment versus Ab, IgG control, or doxorubicin alone. Subcutaneous xenograft tumours were established in female Balb/c athymic nude mice using AN3CA cells expressing IL11 and IL11Rα. Administration of recombinant human IL11 to mice (n = 4/group) activated IL11 downstream target, signal transducers and activators of transcription (STAT3) and significantly increased tumour growth (p < 0.05), suggesting that IL11 promotes high grade tumour growth. IL11Rα blocking Ab reduced STAT3 phosphorylation and combination treatment with doxorubicin resulted in a significant reduction in tumour growth (p < 0.05) compared to Ab, doxorubicin, or IgG control. Our data suggest that therapeutically targeting IL11Rα in combination with doxorubicin chemotherapy could inhibit high grade type I endometrioid cancer growth.


BMX/Etk promotes cell proliferation and tumorigenicity of cervical cancer cells through PI3K/AKT/mTOR and STAT3 pathways.

  • Yuanyuan Li‎ et al.
  • Oncotarget‎
  • 2017‎

Bone marrow X-linked kinase (BMX, also known as Etk) has been reported to be involved in cell proliferation, differentiation, apoptosis, migration and invasion in several types of tumors, but its role in cervical carcinoma remains poorly understood. In this study, we showed that BMX expression exhibits a gradually increasing trend from normal cervical tissue to cervical cancer in situ and then to invasive cervical cancer tissue. Through BMX-IN-1, a potent and irreversible BMX kinase inhibitor, inhibited the expression of BMX, the cell proliferation was significantly decreased. Knockdown of BMX in HeLa and SiHa cervical cancer cell lines using two different silencing technologies, TALEN and shRNA, inhibited cell growth in vitro and suppressed xenograft tumor formation in vivo, whereas overexpression of BMX in the cell line C-33A significantly increased cell proliferation. Furthermore, a mechanism study showed that silencing BMX blocked cell cycle transit from G0/G1 to S or G2/M phase, and knockdown of BMX inhibited the expression of p-AKT and p-STAT3. These results suggested that BMX can promote cell proliferation through PI3K/AKT/mTOR and STAT3 signaling pathways in cervical cancer cells.


Macrophage depletion through colony stimulating factor 1 receptor pathway blockade overcomes adaptive resistance to anti-VEGF therapy.

  • Yasmin A Lyons‎ et al.
  • Oncotarget‎
  • 2017‎

Anti-angiogenesis therapy has shown clinical benefit in patients with high-grade serous ovarian cancer (HGSC), but adaptive resistance rapidly emerges. Thus, approaches to overcome such resistance are needed. We developed the setting of adaptive resistance to anti-VEGF therapy, and performed a series of in vivo experiments in both immune competent and nude mouse models. Given the pro-angiogenic properties of tumor-associated macrophages (TAMs) and the dominant role of CSF1R in macrophage function, we added CSF1R inhibitors following emergence of adaptive resistance to anti-VEGF antibody. Mice treated with a CSF1R inhibitor (AC708) after anti-VEGF antibody resistance had little to no measurable tumor burden upon completion of the experiment while those that did not receive a CSF1R inhibitor still had abundant tumor. To mimic clinically used regimens, mice were also treated with anti-VEGF antibody and paclitaxel until resistance emerged, and then a CSF1R inhibitor was added. The addition of a CSF1R inhibitor restored response to anti-angiogenesis therapy, resulting in 83% lower tumor burden compared to treatment with anti-VEGF antibody and paclitaxel alone. Collectively, our data demonstrate that the addition of a CSF1R inhibitor to anti-VEGF therapy and taxane chemotherapy results in robust anti-tumor effects.


Anticoagulants inhibit proteolytic clearance of plasma amyloid beta.

  • Lu Yang‎ et al.
  • Oncotarget‎
  • 2018‎

We recently discovered a plasma proteolysis pathway, termed the FXII-FVII pathway which is composed of coagulation proteases, and found it to be mainly responsible for the clearance of Aβ42 in the plasma in mice. Aβ42 and Aβ40 are the main Aβ forms in Alzheimer's disease (AD). In the present study, in vitro assays, wild type (WT) mice and J20 mice (a transgenic AD model) are used to assess the degradation of Aβ40 and Aβ42 by the FXII-FVII pathway and the impact of anticoagulants on such degradation. Four clinically available and mechanistically distinct anticoagulants are evaluated, including dabigatran, enoxaparin (EP), rivaroxaban and warfarin. Each anticoagulant significantly elevates plasma level of synthetic Aβ42 in WT mice, among which EP is the most effective. The differential efficacies of the anticoagulants in elevating plasma Aβ42 level match closely with their inhibitory mechanisms towards the FXII-FVII pathway. Plasma Aβ40 is also degraded by the FXII-FVII pathway and is protected by EP. Moreover, the FXII-FVII pathway is significantly activated in J20 mice, but EP inhibits the activation and significantly elevates plasma levels of both Aβ40 and Aβ42. Taken together, our results shed new light on Aβ metabolism, reveal a novel function of anticoagulants, and suggest a novel approach to potentially developing plasma Aβ as an AD biomarker.


The essential role of GATA transcription factors in adult murine prostate.

  • Lijuan Xiao‎ et al.
  • Oncotarget‎
  • 2016‎

GATA transcription factors are essential in mammalian cell lineage determination and have a critical role in cancer development. In cultured prostate cancer cells, GATA2 coordinates with androgen receptor (AR) to regulate gene transcription. In the murine prostate, among six GATA members, GATA2 and GATA3 are expressed. Immunofluorescence staining revealed that both GATA factors predominantly localize in the nuclei of luminal epithelial cells. The pioneer factor FoxA1 is exclusively detected in the luminal cells, whereas AR is detected in both luminal and basal cells. Using genetic engineering, we generated prostate-specific GATA2 and GATA3 knockout (KO) mice. Ablation of single GATA gene had marginal effect on prostate morphology and AR target gene expression, likely due to their genetic compensation. Double KO mice exhibited PIN III to IV lesions, but decreased prostate to body weight ratio, altered AR target gene expression, and expansion of p63-positive basal cells. However, deletion of GATA2 and GATA3 did not reduce the mRNA or protein levels of AR or FoxA1, indicating that GATA factors are not required for AR or FoxA1 expression in adult prostate. Surprisingly, GATA2 and GATA3 exhibit minimal expression in the ventral prostatic (VP) lobe. In contrast, FoxA1 and AR expression levels in VP are at least as high as those in anterior prostatic (AP) and dorsal-lateral prostatic (DLP) lobes. Together, our results indicate that GATA2 and GATA3 are essential for adult murine prostate function and in vivo AR signaling, and the lack of the GATA factor expression in the VP suggests a fundamental difference between VP and other prostatic lobes.


Abnormal CYP11A1 gene expression induces excessive autophagy, contributing to the pathogenesis of preeclampsia.

  • Tianying Pan‎ et al.
  • Oncotarget‎
  • 2017‎

In this study, we investigated the exact mechanism by which excessive CYP11A1 expression impairs the placentation process and whether this causes preeclampsia (PE) in an in vivo model.


Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway.

  • Lingli Long‎ et al.
  • Oncotarget‎
  • 2018‎

As an endocrine disease, type 2 diabetes mellitus (T2DM) can cause testicular damage which induces male infertility. However, the underlying mechanism is still not clear. We prove that T2DM induced testicular microcirculation impairment involves the decrease of VEGF and these actions are regulated by PI3K/Akt pathway. In our study, rats were divided into three groups (n=8): control group, diabetes group and diabetes + VEGF group. Intraperitoneal injection of streptozotocin (STZ, 65mg/Kg, at 9th week) and daily high-fat diet were used to establish T2DM rat model. Serum glucose in diabetes group and diabetes + VEGF group obviously exceeded 13mmol/L after STZ injection. Immunohistochemical studies indicated that VEGF level in diabetes group significantly decreased. In diabetes group, testicular blood velocity and vascular area reduced evaluated by Doppler and FITC. Furthermore, atrophic testicular morphology and increasing apoptosis cells were evaluated by haematoxylin and eosin staining and TUNEL assay. In diabetes + VEGF group, the administration of VEGF (intraperitoneally, 10mg/kg) can significantly alleviated hyperglycemia-induced impairment of testes in above aspects. Finally, we used Western blot to analyze the mechanism of hyperglycemia-induced testicular VEGF decrease. The results indicated that hyperglycemia-induced VEGF decreased is regulated by PI3K/Akt pathway in Rats testicular sertoli cells (RTSCs). Together, we demonstrate that T2DM can reduce testicular VEGF expression, which results in testicular microcirculation impairment, and then induces testicular morphological disarrangement and functional disorder. These actions are triggered by PI3K/Akt pathway. Our findings provide solid evidence for VEGF becoming a therapeutic target in T2DM related male infertility.


Therapeutic efficacy of liposomal Grb2 antisense oligodeoxynucleotide (L-Grb2) in preclinical models of ovarian and uterine cancer.

  • Olivia D Lara‎ et al.
  • Oncotarget‎
  • 2020‎

Adaptor proteins such as growth factor receptor-bound protein-2 (Grb2) play important roles in cancer cell signaling. In the present study, we examined the biological effects of liposomal antisense oligodeoxynucleotide that blocks Grb2 expression (L-Grb2) in gynecologic cancer models.


Downregulation of lncRNA MEG3 and miR-770-5p inhibit cell migration and proliferation in Hirschsprung's disease.

  • Hongxing Li‎ et al.
  • Oncotarget‎
  • 2017‎

The long noncoding RNA (lncRNA) MEG3 is involved in various biological processes including cell migration and cell proliferation. In present study, it was found that MEG3 and the intronic miR-770-5p were decreased in samples from HSCR patients. Besides, knockdown of MEG3 and miR-770-5p suppressed cell migration and proliferation, while cell cycle and apoptosis were not affected in human 293T and SH-SY5Y cells. SRGAP1 mRNA and protein upregulation was inversely correlated with miR-770-5p expression in tissue samples and cell lines, which was confirmed to be a target gene of miR-770-5p by dual-luciferase reporter assay. Moreover, silencing of SRGAP1 rescued the inhibition of cell migration and proliferation induced by MEG3 siRNA and miR-770-5p inhibition. The present study elucidates a novel mechanism of the development of HSCR and shows that the MEG3/miR-770-5p/SRGAP1 pathway plays a vital role in the pathogenesis of HSCR.


The core sequence of PIF competes for insulin/amyloid β in insulin degrading enzyme: potential treatment for Alzheimer's disease.

  • Soren Hayrabedyan‎ et al.
  • Oncotarget‎
  • 2018‎

The central pathological feature of Alzheimer's disease (AD) is the sequential proteolytic processing of amyloid precursor protein (APP) to amyloid-β peptides (Aβ) agglomeration. The clearance of Aβ may be induced by the large zinc-binding protease insulin degrading enzyme (IDE). IDE is the common link between AD and Type II diabetes as insulin is an IDE target as well. Not surprisingly, the search for safe and effective drugs modulating IDE is ongoing. A new pregnancy derived peptide, PreImplantation Factor (PIF), inhibits neuro-inflammation and crosses the blood-brain-barrier. Importantly, we report that the (R3I4K5P6) core sequence of the PIF peptide modulates IDE function and results in decreased Aβ agglomeration in neuronal cells. Using bioinformatics we show that PIF binds to the IDE complex and sterically competes for the same place as insulin or Aβ. The predicted RIKP sequence and especially the specific I4 and P6 amino acids are essential for hydrophobic interactions with the IDE complex. In terms of potential AD treatment, PIF was successfully tested in neurodegenerative animal models of perinatal brain injury and experimental autoimmune encephalitis. Importantly, sPIF received a FDA Fast Track Approval and orphan drug designation for first-in-human trial in autoimmunity.


The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung.

  • Mirjana Grujic‎ et al.
  • Oncotarget‎
  • 2017‎

Mast cell secretory granules are densely packed with various bioactive mediators including proteases of chymase, tryptase and CPA3 type. Previous studies have indicated that mast cells can affect the outcome of melanoma but the contribution of the mast cell granule proteases to such effects has not been clear. Here we addressed this issue by assessing mice lacking either the chymase Mcpt4, the tryptase Mcpt6 or carboxypeptidase A3 (Cpa3), as well as mice simultaneously lacking all three proteases, in a model of melanoma dissemination from blood to the lung. Although mice with individual deficiency in the respective proteases did not differ significantly from wildtype mice in the extent of melanoma colonization, mice with multiple protease deficiency (Mcpt4/Mcpt6/Cpa3-deficient) exhibited a higher extent of melanoma colonization in lungs as compared to wildtype animals. This was supported by higher expression of melanoma-specific genes in lungs of Mcpt4/Mcpt6/CPA3-deficient vs. wildtype mice. Cytokine profiling showed that the levels of CXCL16, a chemokine with effects on T cell populations and NKT cells, were significantly lower in lungs of Mcpt4/Mcpt6/Cpa3-deficient animals vs. controls, suggesting that multiple mast cell protease deficiency might affect T cell or NKT cell populations. In line with this, we found that the Mcpt4/Mcpt6/Cpa3-deficiency was associated with a reduction in cells expressing CD1d, a MHC class 1-like molecule that is crucial for presenting antigen to invariant NKT (iNKT) cells. Together, these findings indicate a protective role of mast cell-specific proteases in melanoma dissemination, and suggest that this effect involves a CXCL16/CD1d/NKT cell axis.


High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells.

  • Hui Li‎ et al.
  • Oncotarget‎
  • 2017‎

Somatic cell nuclear transfer and transcription factor mediated reprogramming are two widely used techniques for somatic cell reprogramming. Both fully reprogrammed nuclear transfer embryonic stem cells and induced pluripotent stem cells hold potential for regenerative medicine, and evaluation of the stem cell pluripotency state is crucial for these applications. Previous reports have shown that the Dlk1-Dio3 region is associated with pluripotency in induced pluripotent stem cells and the incomplete somatic cell reprogramming causes abnormally elevated levels of genomic 5-methylcytosine in induced pluripotent stem cells compared to nuclear transfer embryonic stem cells and embryonic stem cells. In this study, we compared pluripotency associated genes Rian and Gtl2 in the Dlk1-Dio3 region in exactly syngeneic nuclear transfer embryonic stem cells and induced pluripotent stem cells with same genomic insertion. We also assessed 5-methylcytosine and 5-hydroxymethylcytosine levels and performed high-throughput sequencing in these cells. Our results showed that Rian and Gtl2 in the Dlk1-Dio3 region related to pluripotency in induced pluripotent stem cells did not correlate with the genes in nuclear transfer embryonic stem cells, and no significant difference in 5-methylcytosine and 5-hydroxymethylcytosine levels were observed between fully and partially reprogrammed nuclear transfer embryonic stem cells and induced pluripotent stem cells. Through syngeneic comparison, our study identifies for the first time that Grb10 is associated with the pluripotency state in nuclear transfer embryonic stem cells.


Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment.

  • Aditi Banerjee‎ et al.
  • Oncotarget‎
  • 2016‎

The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histone-associated-DNA-fragments, and increase cleaved caspase-3 levels. Andrographolide also induced significantly higher expression of endoplasmic reticulum (ER) stress proteins GRP-78 and IRE-1 by 48 h but not PERK or ATF6. Apoptosis signaling molecules BAX, spliced XBP-1 and CHOP were also significantly increased. Moreover, chemical inhibition of ER stress or IRE-1 depletion with siRNA in andrographolide treated cells significantly limited expression of IRE-1 and CHOP as determined by immunofluorescence staining, real time PCR, or immunobloting. This was accompanied by a decreased BAX/Bcl-2 ratio. Andrographolide significantly promotes cancer cell death compared to normal cells. These data demonstrate that andrographolide associated ER stress contributes to apoptosis through the activation of a pro-apoptotic GRP-78/IRE-1/XBP-1/CHOP signaling pathway.


The correlation of sperm morphology with unexplained recurrent spontaneous abortion: A systematic review and meta-analysis.

  • Xiaodan Cao‎ et al.
  • Oncotarget‎
  • 2017‎

Sperm morphology displays a potential impact on sperm function and may ultimately impact reproductive function. Current studies have investigated the correlation between sperm morphology with unexplained recurrent spontaneous abortion (RSA) but have shown inconsistent results. Hence, we systematically searched MEDLINE, EMBASE, CNKI databases, as well as the Cochrane Library for studies that examined the association between sperm morphology and unexplained RSA. Fifteen studies were identified, including 883 cases and 530 controls. Our meta-analysis results indicated that the percentage of normal sperm morphology from men with RSA partners was significantly lower than those from normal controls(SMD [95% CI]: - 0.60 [-0.81, -0.40]; P<0.00001) and the percentage of sperm morphologic alterations was significantly higher in patients with RSA compared with the control group (SMD [95% CI]: 0.92 [0.42, 1.43]; P=0.0004). The present study suggested that the percentage of normal sperm morphology may indeed decrease in men from RSA group compared with controls. However, there were some limitations in the study such as the differences in stain techniques and classification criteria. Further evidences are needed to better elucidate the relationship between sperm morphology and unexplained RSA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: