Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Mitochondrial outer membrane voltage-dependent anion channel is involved in renal dysfunction in a spontaneously hypertensive rat carrying transfer RNA mutations.

  • Chao Zhu‎ et al.
  • European journal of pharmacology‎
  • 2019‎

Mitochondrial DNA mutations promote hypertensive renal dysfunction, but the molecular mechanism remains unclear. This study compared renal damage between spontaneously hypertensive rats (SHR) and SHR with mitochondrial transfer (t)RNA mutations. To investigate the role of mitochondrial outer membrane voltage-dependent anion channel 1 (VDAC1) in the process of tRNA-promoting mitochondrial dysfunction, we treated HK-2 cells with H2O2, cyclosporine (CsA), or atractylodin (Atr) to observe the association between VDAC1 and mitochondrial function. Intriguingly, the mitochondrial structure of SHR carrying tRNA mutations was obviously disordered, and reactive oxygen species production and VDAC1 and Bax expression and binding were increased, which was associated with marked renal dysfunction. The expression of VDAC1 and Bax was also up-regulated in HK-2 cells by H2O2 treatment. However, CsA and Atr had no significant effect on the expression of VDAC1 and Bax. H2O2 caused mitochondrial membrane potential collapse, while CsA could increase the mitochondrial membrane potential and Atr had the opposite effect. Treatment with H2O2 significantly decreased ATP synthesis, which was improved by intervention with Atr. H2O2 also decreased the maximum oxygen consumption rate, while CsA and Atr had no significant effect. We found that H2O2 promoted the colocalization of VDAC1 and Bax, which was partially inhibited by intervention with CsA or Atr. In conclusion, we found that tRNA mutations promoted hypertensive renal insufficiency. Increased reactive oxygen species was an important associated mechanism, which inhibited mitochondrial function by affecting VDAC1 expression and function.


Perinatal growth restriction decreases diuretic action of furosemide in adult rats.

  • Barent N DuBois‎ et al.
  • European journal of pharmacology‎
  • 2014‎

Perinatal growth restriction programs higher risk for chronic disease during adulthood via morphological and physiological changes in organ systems. Perinatal growth restriction is highly correlated with a decreased nephron number, altered renal function and subsequent hypertension. We hypothesize that such renal maladaptations result in altered pharmacologic patterns for life. Maternal protein restriction during gestation and lactation was used to induce perinatal growth restriction in the current study. The diuretic response of furosemide (2mg/kg single i.p. dose) in perinatally growth restricted rats during adulthood was investigated. Diuresis, natriuresis and renal excretion of furosemide were significantly reduced relative to controls, indicative of decreased efficacy. While a modest 12% decrease in diuresis was observed in males, females experienced 26% reduction. It is important to note that the baseline urine output and natriuresis were similar between treatment groups. The in vitro renal and hepatic metabolism of furosemide, the in vivo urinary excretion of the metabolite, and the expression of renal drug transporters were unaltered. Creatinine clearance was significantly reduced by 15% and 19% in perinatally growth restricted male and female rats, respectively. Further evidence of renal insufficiency was suggested by decreased uric acid clearance. Renal protein expression of sodium-potassium-chloride cotransporter, a pharmacodynamic target, was unaltered. In summary, perinatal growth restriction could permanently imprint pharmacokinetic processes affecting drug response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: