Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 617 papers

Axonal Odorant Receptors Mediate Axon Targeting.

  • Ilaria Zamparo‎ et al.
  • Cell reports‎
  • 2019‎

In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting.


Functional evolution of mammalian odorant receptors.

  • Kaylin A Adipietro‎ et al.
  • PLoS genetics‎
  • 2012‎

The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.


Concentration-Dependent Recruitment of Mammalian Odorant Receptors.

  • Xiaoyang Serene Hu‎ et al.
  • eNeuro‎
  • 2020‎

A fundamental challenge in studying principles of organization used by the olfactory system to encode odor concentration information has been identifying comprehensive sets of activated odorant receptors (ORs) across a broad concentration range inside freely behaving animals. In mammals, this has recently become feasible with high-throughput sequencing-based methods that identify populations of activated ORs in vivo In this study, we characterized the mouse OR repertoires activated by the two odorants, acetophenone (ACT) and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), from 0.01% to 100% (v/v) as starting concentrations using phosphorylated ribosomal protein S6 capture followed by RNA-Seq. We found Olfr923 to be one of the most sensitive ORs that is enriched by ACT. Using a mouse line that genetically labels Olfr923-positive axons, we provided evidence that ACT activates the Olfr923 glomeruli in the olfactory bulb. Through molecular dynamics stimulations, we identified amino acid residues in the Olfr923 binding cavity that facilitate ACT binding. This study sheds light on the active process by which unique OR repertoires may collectively facilitate the discrimination of odorant concentrations.


A unified nomenclature system for the Drosophila odorant receptors. Drosophila Odorant Receptor Nomenclature Committee.

  • Cell‎
  • 2000‎

No abstract available


Calmodulin Affects Sensitization of Drosophila melanogaster Odorant Receptors.

  • Latha Mukunda‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2016‎

Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs), occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX) and a highly conserved co-receptor protein (Orco). The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM) action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs) expressing Or22a inside the fly's antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native neurons are required to study the presently unknown additional mechanisms involved in OSN sensitization.


Differences in (-)citronellal binding to various odorant receptors.

  • Anna Stary‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

To test the hypothesis that olfactory receptors (ORs) recognize different molecular features of odor molecules termed "odotypes", we studied receptor-ligand interactions of two human and two mouse ORs, recognizing (-)citronellal. Structurally similar receptors provide identical binding pockets (OLFR43, OR1A1, and OR1A2), and have comparable EC(50) values. Other ORs with lower sequence identity bind (-)citronellal in a different way, leading to different EC(50) values.


Odorant Binding Proteins (OBPs) and Odorant Receptors (ORs) of Anopheles stephensi: Identification and comparative insights.

  • Zeeshan Zafar‎ et al.
  • PloS one‎
  • 2022‎

Anopheles stephensi is an important vector of malaria in the South Asia, the Middle East, and Eastern Africa. The olfactory system of An. stephensi plays an important role in host-seeking, oviposition, and feeding. Odorant binding proteins (OBPs) are globular proteins that play a pivotal role in insect olfaction by transporting semiochemicals through the sensillum lymph to odorant receptors (ORs). Custom motifs designed from annotated OBPs of Aedes aegypti, Drosophila melanogaster, and Anopheles gambiae were used for the identification of putative OBPs from protein sequences of the An. stephensi Indian strain. Further, BLASTp was also performed to identify missing OBPs and ORs. Subsequently, the presence of domains common to OBPs was confirmed. Identified OBPs were further classified into three sub-classes. Phylogenetic and syntenic analyses were carried out to find homology, and thus the evolutionary relationship between An. stephensi OBPs and ORs with those of An. gambiae, Ae. aegypti and D. melanogaster. Gene structure and physicochemical properties of the OBPs and ORs were also predicted. A total of 44 OBPs and 45 ORs were predicted from the protein sequences of An. stephensi. OBPs were further classified into the classic (27), atypical (10) and plus-C (7) OBP subclasses. The phylogeny revealed close relationship of An. stephensi OBPs and ORs with An. gambiae homologs whereas only five OBPs and two ORs of An. stephensi were related to Ae. aegypti OBPs and ORs, respectively. However, D. melanogaster OBPs and ORs were distantly rooted. Synteny analyses showed the presence of collinear block between the OBPs and ORs of An. stephensi and An. gambiae as well as Ae. aegypti's. No homology was found with D. melanogaster OBPs and ORs. As an important component of the olfactory system, correctly identifying a species' OBPs and ORs provide a valuable resource for downstream translational research that will ultimately aim to better control the malaria vector An. stephensi.


Amphioxus (Branchiostoma floridae) has orthologs of vertebrate odorant receptors.

  • Allison M Churcher‎ et al.
  • BMC evolutionary biology‎
  • 2009‎

A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system.


Engineered odorant receptors illuminate structural principles of odor discrimination.

  • Claire A de March‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

A central challenge in olfaction is understanding how the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations. Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans, ~400 ORs enable the sense of smell. The OR family is composed of two major classes: Class I ORs are tuned to carboxylic acids while Class II ORs, representing the vast majority of the human repertoire, respond to a wide variety of odorants. How ORs recognize chemically diverse odorants remains poorly understood. A fundamental bottleneck is the inability to visualize odorant binding to ORs. Here, we uncover fundamental molecular properties of odorant-OR interactions by employing engineered ORs crafted using a consensus protein design strategy. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modeling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled four cryoEM structures of distinct consORs with unique ligand recognition properties. The structure of a Class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and yielded a homology model of a related member of the human OR51 family with high predictive power. Structures of three Class II consORs revealed distinct modes of odorant-binding and activation mechanisms between Class I and Class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.


RTP family members induce functional expression of mammalian odorant receptors.

  • Harumi Saito‎ et al.
  • Cell‎
  • 2004‎

Transport of G protein-coupled receptors (GPCRs) to the cell surface membrane is critical in order for the receptors to recognize their ligands. However, mammalian GPCR odorant receptors (ORs), when heterologously expressed in cells, are poorly expressed on the cell surface. Here we show that the transmembrane proteins RTP1 and RTP2 promote functional cell surface expression of ORs expressed in HEK293T cells. Genes encoding these proteins are expressed specifically in olfactory neurons. These proteins are associated with OR proteins and enhance the OR responses to odorants. Similar although weaker effects were seen with a third protein, REEP1. These findings suggest that RTP1 and RTP2 in particular play significant roles in the translocation of ORs to the plasma membrane as well as in the functioning of ORs. We have used this approach to identify active odorant ligands for ORs, providing a platform for screening the chemical selectivity of the large OR family.


Sex-specific odorant receptors of the tobacco hornworm manduca sexta.

  • Ewald Große-Wilde‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2010‎

As odor information plays a vital role in the life of moths, their olfactory sense has evolved into a highly specific and sensitive apparatus relevant to reproduction and survival. The key players in the detection of odorants are olfactory receptor (OR) proteins. Here we identify four OR-encoding genes differentially expressed in the antennae of males and females of the sphingid moth Manduca sexta. Two male-specific receptors (the previously reported MsexOR-1 and the newly identified MsexOR-4) show great resemblance to other male moth pheromone ORs. The putative pheromone receptors are co-expressed with the co-receptor involved in general odorant signal transduction, the DmelOr83b homolog MsexOR-2. One female-specific receptor (MsexOR-5) displays similarities to BmorOR-19, a receptor in Bombyx mori tuned to the detection of the plant odor linalool.


Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons.

  • Huaiyang Chen‎ et al.
  • Neural development‎
  • 2008‎

Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment.


The genomic architecture and molecular evolution of ant odorant receptors.

  • Sean K McKenzie‎ et al.
  • Genome research‎
  • 2018‎

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.


Vapor detection and discrimination with a panel of odorant receptors.

  • Hitoshi Kida‎ et al.
  • Nature communications‎
  • 2018‎

Olfactory systems have evolved the extraordinary capability to detect and discriminate volatile odorous molecules (odorants) in the environment. Fundamentally, this process relies on the interaction of odorants and their cognate olfactory receptors (ORs) encoded in the genome. Here, we conducted a cell-based screen using over 800 mouse ORs against seven odorants, resulting in the identification of a set of high-affinity and/or broadly-tuned ORs. We then test whether heterologously expressed ORs respond to odors presented in vapor phase by individually expressing 31 ORs to measure cAMP responses against vapor phase odor stimulation. Comparison of response profiles demonstrates this platform is capable of discriminating between structural analogs. Lastly, co-expression of carboxyl esterase Ces1d expressed in olfactory mucosa resulted in marked changes in activation of specific odorant-OR combinations. Altogether, these results establish a cell-based volatile odor detection and discrimination platform and form the basis for an OR-based volatile odor sensor.


The structural basis of odorant recognition in insect olfactory receptors.

  • Josefina Del Mármol‎ et al.
  • Nature‎
  • 2021‎

Olfactory systems must detect and discriminate amongst an enormous variety of odorants1. To contend with this challenge, diverse species have converged on a common strategy in which odorant identity is encoded through the combinatorial activation of large families of olfactory receptors1-3, thus allowing a finite number of receptors to detect a vast chemical world. Here we offer structural and mechanistic insight into how an individual olfactory receptor can flexibly recognize diverse odorants. We show that the olfactory receptor MhOR5 from the jumping bristletail4 Machilis hrabei assembles as a homotetrameric odorant-gated ion channel with broad chemical tuning. Using cryo-electron microscopy, we elucidated the structure of MhOR5 in multiple gating states, alone and in complex with two of its agonists-the odorant eugenol and the insect repellent DEET. Both ligands are recognized through distributed hydrophobic interactions within the same geometrically simple binding pocket located in the transmembrane region of each subunit, suggesting a structural logic for the promiscuous chemical sensitivity of this receptor. Mutation of individual residues lining the binding pocket predictably altered the sensitivity of MhOR5 to eugenol and DEET and broadly reconfigured the receptor's tuning. Together, our data support a model in which diverse odorants share the same structural determinants for binding, shedding light on the molecular recognition mechanisms that ultimately endow the olfactory system with its immense discriminatory capacity.


Identification of agonists for a group of human odorant receptors.

  • Daniela C Gonzalez-Kristeller‎ et al.
  • Frontiers in pharmacology‎
  • 2015‎

Olfaction plays a critical role in several aspects of the human life. Odorants are detected by hundreds of odorant receptors (ORs) which belong to the superfamily of G protein-coupled receptors. These receptors are expressed in the olfactory sensory neurons of the nose. The information provided by the activation of different combinations of ORs in the nose is transmitted to the brain, leading to odorant perception and emotional and behavioral responses. There are ~400 intact human ORs, and to date only a small percentage of these receptors (~10%) have known agonists. The determination of the specificity of the human ORs will contribute to a better understanding of how odorants are discriminated by the olfactory system. In this work, we aimed to identify human specific ORs, that is, ORs that are present in humans but absent from other species, and their corresponding agonists. To do this, we first selected 22 OR gene sequences from the human genome with no counterparts in the mouse, rat or dog genomes. Then we used a heterologous expression system to screen a subset of these human ORs against a panel of odorants of biological relevance, including foodborne aroma volatiles. We found that different types of odorants are able to activate some of these previously uncharacterized human ORs.


Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors.

  • Merid N Getahun‎ et al.
  • PloS one‎
  • 2013‎

Insects possess one of the most exquisitely sensitive olfactory systems in the animal kingdom, consisting of three different types of chemosensory receptors: ionotropic glutamate-like receptors (IRs), gustatory receptors (GRs) and odorant receptors (ORs). Both insect ORs and IRs are ligand-gated ion channels, but ORs possess a unique configuration composed of an odorant-specific protein OrX and a ubiquitous coreceptor (Orco). In addition, these two ionotropic receptors confer different tuning properties for the neurons in which they are expressed. Unlike IRs, neurons expressing ORs are more sensitive and can also be sensitized by sub-threshold concentrations of stimuli. What is the mechanistic basis for these differences in tuning? We show that intrinsic regulation of Orco enhances neuronal response to odorants and sensitizes the ORs. We also demonstrate that inhibition of metabotropic regulation prevents receptor sensitization. Our results indicate that Orco-mediated regulation of OR sensitivity provides tunable ionotropic receptors capable of detecting odors over a wider range of concentrations, providing broadened sensitivity over IRs themselves.


Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes.

  • Agne Malki‎ et al.
  • Journal of leukocyte biology‎
  • 2015‎

Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40-60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes.


Identification of candidate odorant receptors in Asian corn borer Ostrinia furnacalis.

  • Bin Yang‎ et al.
  • PloS one‎
  • 2015‎

In lepidopteran insects, odorant receptors are involved in the perception of sex pheromones and general odorants. In the Asian corn borer, Ostrinia furnacalis, although several pheromone receptors have been identified, no general odorant receptor has been reported. In this study, an RNA sequencing analysis was carried out to identify the whole repertoire of the odorant receptors expressed in the antennae of O. furnacalis. Among 12 million reads obtained from the antennae of male and female moths, 52 candidate odorant receptors were identified, including 45 novel ones. Expression levels of candidate odorant receptors were estimated by read mapping and quantitative reverse transcription PCR. These analyses confirmed that the expression of the previously identified pheromone receptors was highly male biased. In contrast, none of the newly identified odorant receptors showed male-biased expression. Three of the newly identified odorant receptors showed female-biased expression. Two of them were the most highly expressed odorant receptors in the female antennae, suggesting that they may be involved in the detection of odorants important for the induction of female-specific behaviors such as oviposition site selection. In addition, candidate genes of 21 ionotropic receptors, 5 gustatory receptors, 2 sensory neuron membrane proteins, and 26 odorant degrading enzymes were identified. Our results provide a basis for further analysis of the chemosensory system in the Ostrinia species.


Hedgehog Signaling Regulates the Ciliary Transport of Odorant Receptors in Drosophila.

  • Gonzalo M Sanchez‎ et al.
  • Cell reports‎
  • 2016‎

Hedgehog (Hh) signaling is a key regulatory pathway during development and also has a functional role in mature neurons. Here, we show that Hh signaling regulates the odor response in adult Drosophila olfactory sensory neurons (OSNs). We demonstrate that this is achieved by regulating odorant receptor (OR) transport to and within the primary cilium in OSN neurons. Regulation relies on ciliary localization of the Hh signal transducer Smoothened (Smo). We further demonstrate that the Hh- and Smo-dependent regulation of the kinesin-like protein Cos2 acts in parallel to the intraflagellar transport system (IFT) to localize ORs within the cilium compartment. These findings expand our knowledge of Hh signaling to encompass chemosensory modulation and receptor trafficking.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: