2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 60 papers

Interaction of Synthetic Human SLURP-1 with the Nicotinic Acetylcholine Receptors.

  • Thomas Durek‎ et al.
  • Scientific reports‎
  • 2017‎

Human SLURP-1 is a secreted protein of the Ly6/uPAR/three-finger neurotoxin family that co-localizes with nicotinic acetylcholine receptors (nAChRs) and modulates their functions. Conflicting biological activities of SLURP-1 at various nAChR subtypes have been based on heterologously produced SLURP-1 containing N- and/or C-terminal extensions. Here, we report the chemical synthesis of the 81 amino acid residue human SLURP-1 protein, characterization of its 3D structure by NMR, and its biological activity at nAChR subtypes. Radioligand assays indicated that synthetic SLURP-1 did not compete with [125I]-α-bungarotoxin (α-Bgt) binding to human neuronal α7 and Torpedo californica muscle-type nAChRs, nor to mollusk acetylcholine binding proteins (AChBP). Inhibition of human α7-mediated currents only occurred in the presence of the allosteric modulator PNU120596. In contrast, we observed robust SLURP-1 mediated inhibition of human α3β4, α4β4, α3β2 nAChRs, as well as human and rat α9α10 nAChRs. SLURP-1 inhibition of α9α10 nAChRs was accentuated at higher ACh concentrations, indicating an allosteric binding mechanism. Our results are discussed in the context of recent studies on heterologously produced SLURP-1 and indicate that N-terminal extensions of SLURP-1 may affect its activity and selectivity on its targets. In this respect, synthetic SLURP-1 appears to be a better probe for structure-function studies.


Conotoxin αD-GeXXA utilizes a novel strategy to antagonize nicotinic acetylcholine receptors.

  • Shaoqiong Xu‎ et al.
  • Scientific reports‎
  • 2015‎

Nicotinic acetylcholine receptors (nAChRs) play essential roles in transmitting acetylcholine-mediated neural signals across synapses and neuromuscular junctions, and are also closely linked to various diseases and clinical conditions. Therefore, novel nAChR-specific compounds have great potential for both neuroscience research and clinical applications. Conotoxins, the peptide neurotoxins produced by cone snails, are a rich reservoir of novel ligands that target receptors, ion channels and transporters in the nervous system. From the venom of Conus generalis, we identified a novel dimeric nAChR-inhibiting αD-conotoxin GeXXA. By solving the crystal structure and performing structure-guided dissection of this toxin, we demonstrated that the monomeric C-terminal domain of αD-GeXXA, GeXXA-CTD, retains inhibitory activity against the α9α10 nAChR subtype. Furthermore, we identified that His7 of the rat α10 nAChR subunit determines the species preference of αD-GeXXA, and is probably part of the binding site of this toxin. These results together suggest that αD-GeXXA cooperatively binds to two inter-subunit interfaces on the top surface of nAChR, thus allosterically disturbing the opening of the receptor. The novel antagonistic mechanism of αD-GeXXA via a new binding site on nAChRs provides a valuable basis for the rational design of new nAChR-targeting compounds.


Anti-neuropathic effects of Rosmarinus officinalis L. terpenoid fraction: relevance of nicotinic receptors.

  • Lorenzo Di Cesare Mannelli‎ et al.
  • Scientific reports‎
  • 2016‎

Traditional uses and current results highlight the neuroprotective properties of Rosmarinus officinalis L. The compelling need for novel strategies able to relieve neuropathic pain encouraged us to analyze different rosemary leaf extracts in rats following chronic constriction injury (CCI) of sciatic nerve. Ethanol, acetone, and the innovative ultrasound-hexane extractive methods were used to obtain: EE, AE, and for hexane extracts UREprel and URE. Extracts were characterized in terms of typical constituents and repeatedly administered to CCI-rats (13-days treatment, from the day of surgery). URE showed the best efficacy and potency in reducing hypersensitivity to noxious- and non-noxious stimuli and spontaneous pain. URE contained the higher quantity of the terpenoid carnosic acid (CA) and its efficacy was compared to pure CA. Histological analysis of the sciatic nerve revealed that URE prevented axon and myelin derangement, edema and inflammatory infiltrate. In the dorsal horn of the spinal cord, URE did not reduce astrocyte activation. Both the pain reliever and the neuroconservative effects of URE were significantly prevented by the nicotinic receptor (nAChR) antagonist mecamylamine. In conclusion, the hexane-ultrasound rosemary extract is able to reduce neuropathic hypersensitivity and protect nervous tissues. Effectiveness is mainly related to the terpenoid fraction by mechanisms involving nAChRs.


Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors.

  • Stefania Tolu‎ et al.
  • Scientific reports‎
  • 2017‎

Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2-/- and β4-/- mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2-/- and β4-/- mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs.


Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition.

  • Hamid S Kachel‎ et al.
  • Scientific reports‎
  • 2016‎

Philanthotoxin-433 (PhTX-433) is an active component of the venom from the Egyptian digger wasp, Philanthus triangulum. PhTX-433 inhibits several excitatory ligand-gated ion channels, and to improve selectivity two synthetic analogues, PhTX-343 and PhTX-12, were developed. Previous work showed a 22-fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at -80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage dependence was observed. We conclude that PhTX-343 mainly acts as an open-channel blocker of nAChRs with strong subtype selectivity.


Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen).

  • Haibo Bao‎ et al.
  • Scientific reports‎
  • 2015‎

Associated proteins are important for the correct functioning of nicotinic acetylcholine receptors (nAChRs). In the present study, a neonicotinoid-agarose affinity column was used to isolate related proteins from a solubilized membrane preparation from the nervous system of Locusta migratoria manilensis (Meyen). 1530 peptides were identified and most of them were involved in the membranous structure, molecular interaction and cellular communication. Among these peptides, Na(+)/K(+) ATPase had the highest MASCOT score and were involved in the molecular interaction, which suggested that Na(+)/K(+) ATPase and nAChRs might have strong and stable interactions in insect central nervous system. In the present study, functional interactions between nAChRs and Na(+)/K(+) ATPase were examined by heterologous expression in Xenopus oocytes. The results showed that the activated nAChRs increased pump currents of Na(+)/K(+) ATPase, which did not require current flow through open nAChRs. In turn, Na(+)/K(+) ATPase significantly increased agonist sensitivities of nAChRs in a pump activity-independent manner and reduced the maximum current (Imax) of nAChRs. These findings provide novel insights concerning the functional interactions between insect nAChRs and Na(+)/K(+) ATPase.


The modulation of nicotinic acetylcholine receptors on the neuronal network oscillations in rat hippocampal CA3 area.

  • Yang Wang‎ et al.
  • Scientific reports‎
  • 2015‎

γ oscillations are associated with higher brain functions such as memory, perception and consciousness. Disruption of γ oscillations occur in various neuro-psychological disorders such as schizophrenia. Nicotinic acetylcholine receptors (nAChR) are highly expressed in the hippocampus, however, little is known about the role on hippocampal persistent γ oscillation. This study examined the effects of nicotine and selective nAChR agonists and antagonists on kainate-induced persistent γ oscillation in rat hippocampal slices. Nicotine enhanced γ oscillation at concentrations of 0.1-10 μM, but reduced it at a higher concentration of 100 μM. The enhancement on γ oscillation can be best mimicked by co-application of α4β2- and α7-nAChR agonist and reduced by a combination of nAChR antagonists, DhβE and MLA. However, these nAChR antagonists failed to block the suppressing role of nicotine on γ. Furthermore, we found that the NMDA receptor antagonist D-AP5 completely blocked the effect of nicotine. These results demonstrate that nicotine modulates γ oscillations via α7 and α4β2 nAChR as well as NMDA activation, suggesting that nAChR activation may have a therapeutic role for the clinical disorder such as schizophrenia, which is known to have impaired γ oscillation and hypo-NMDA receptor function.


Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

  • K Richter‎ et al.
  • Scientific reports‎
  • 2016‎

We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.


The human acetylcholinesterase C-terminal T30 peptide activates neuronal growth through alpha 7 nicotinic acetylcholine receptors and the mTOR pathway.

  • Alexandru Graur‎ et al.
  • Scientific reports‎
  • 2023‎

Acetylcholinesterase (AChE) is a highly conserved enzyme responsible for the regulation of acetylcholine signaling within the brain and periphery. AChE has also been shown to participate in non-enzymatic activity and contribute to cellular development and aging. In particular, enzymatic cleavage of the synaptic AChE isoform, AChE-T, is shown to generate a bioactive T30 peptide that binds to the ⍺7 nicotinic acetylcholine receptor (nAChR) at synapses. Here, we explore intracellular mechanisms of T30 signaling within the human cholinergic neural cell line SH-SY5Y using high performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS). Proteomic analysis of cells exposed to (100 nM) T30 for 3-days reveals significant changes within proteins important for cell growth. Specifically, bioinformatic analysis identifies proteins that converge onto the mammalian target of rapamycin (mTOR) pathway signaling. Functional experiments confirm that T30 regulates neural cell growth via mTOR signaling and ⍺7 nAChR activation. T30 was found promote mTORC1 pro-growth signaling through an increase in phosphorylated elF4E and S6K1, and a decrease in the autophagy LC3B-II protein. These findings are corroborated in hippocampal neurons and show that T30 promotes dendritic arborization. Taken together, our findings define mTOR as a novel pathway activated by T30 interaction with the nAChR and suggest a role for this process in human disease.


Transcriptome Profile of Nicotinic Receptor-Linked Sensitization of Beta Amyloid Neurotoxicity.

  • Komal Arora‎ et al.
  • Scientific reports‎
  • 2020‎

Understanding the specific gene changes underlying the prodromic stages of Alzheimer's disease pathogenesis will aid the development of new, targeted therapeutic strategies for this neurodegenerative disorder. Here, we employed RNA-sequencing to analyze global differential gene expression in a defined model nerve cell line expressing α4β2 nicotinic receptors (nAChRs), high-affinity targets for beta amyloid (Aβ). The nAChR-expressing neuronal cells were treated with nanomolar Aβ1-42 to gain insights into the molecular mechanisms underlying Aβ-induced neurotoxicity in the presence of this sensitizing target receptor. We identified 15 genes (out of 15,336) that were differentially expressed upon receptor-linked Aβ treatment. Genes up-regulated with Aβ treatment were associated with calcium signaling and axonal vesicle transport (including the α4 nAChR subunit, the calcineurin regulator RCAN3, and KIF1C of the kinesin family). Downregulated genes were associated with metabolic, apoptotic or DNA repair pathways (including APBA3, PARP1 and RAB11). Validation of the differential expression was performed via qRT-PCR and immunoblot analysis in the defined model nerve cell line and primary mouse neurons. Further verification was performed using immunocytochemistry. In conclusion, we identified apparent changes in gene expression on Aβ treatment in the presence of the sensitizing nAChRs, linked to early-stage Aβ-induced neurotoxicity, which may represent novel therapeutic targets.


Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission.

  • Aphroditi A Mamaligas‎ et al.
  • Scientific reports‎
  • 2016‎

In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons.


Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor.

  • Nikita Abraham‎ et al.
  • Scientific reports‎
  • 2017‎

Nicotinic acetylcholine receptors (nAChR) are therapeutic targets for a range of human diseases. α-Conotoxins are naturally occurring peptide antagonists of nAChRs that have been used as pharmacological probes and investigated as drug leads for nAChR related disorders. However, α-conotoxin interactions have been mostly characterised at the α7 and α3β2 nAChRs, with interactions at other subtypes poorly understood. This study provides novel structural insights into the molecular basis for α-conotoxin activity at α3β4 nAChR, a therapeutic target where subtype specific antagonists have potential to treat nicotine addiction and lung cancer. A co-crystal structure of α-conotoxin LsIA with Lymnaea stagnalis acetylcholine binding protein guided the design and functional characterisations of LsIA analogues that identified the minimum pharmacophore regulating α3β4 antagonism. Interactions of the LsIA R10F with β4 K57 and the conserved -NN- α-conotoxin motif with β4 I77 and I109 conferred α3β4 activity to the otherwise inactive LsIA. Using these structural insights, we designed LsIA analogues with α3β4 activity. This new understanding of the structural basis of protein-protein interactions between α-conotoxins and α3β4 may help rationally guide the development of α3β4 selective antagonists with therapeutic potential.


Endogenous neurotoxin-like protein Ly6H inhibits alpha7 nicotinic acetylcholine receptor currents at the plasma membrane.

  • Yasuhiro Moriwaki‎ et al.
  • Scientific reports‎
  • 2020‎

α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and regarded as potential therapeutic targets for neurodegenerative conditions, such as Alzheimer's disease and schizophrenia. Yet, despite the assumed pathophysiological importance of the α7 nAChR, molecular physiological characterization remains poorly advanced because α7 nAChR cannot be properly folded and sorted to the plasma membranes in most mammalian cell lines, thus preventing the analyses in heterologous expression system. Recently, ER-resident membrane protein NACHO was discovered as a strong chaperone for the functional expression of α7 nAChR in non-permissive cells. Ly6H, a brain-enriched GPI-anchored neurotoxin-like protein, was reported as a novel modulator regulating intracellular trafficking of α7 nAChR. In this study, we established cell lines that stably and robustly express surface α7 nAChR by introducing α7 nAChR, Ric-3, and NACHO cDNA into HEK293 cells (Triple α7 nAChR/RIC-3/NACHO cells; TARO cells), and re-evaluated the function of Ly6H. We report here that Ly6H binds with α7 nAChRs on the cell membrane and modulates the channel activity without affecting intracellular trafficking of α7 nAChR.


Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2.

  • Yaling Yin‎ et al.
  • Scientific reports‎
  • 2016‎

Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer's disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments.


Multiple mutations in the nicotinic acetylcholine receptor Ccα6 gene associated with resistance to spinosad in medfly.

  • Enric Ureña‎ et al.
  • Scientific reports‎
  • 2019‎

Spinosad is an insecticide widely used for the control of insect pest species, including Mediterranean fruit fly, Ceratitis capitata. Its target site is the α6 subunit of the nicotinic acetylcholine receptors, and different mutations in this subunit confer resistance to spinosad in diverse insect species. The insect α6 gene contains 12 exons, with mutually exclusive versions of exons 3 (3a, 3b) and 8 (8a, 8b, 8c). We report here the selection of a medfly strain highly resistant to spinosad, JW-100 s, and we identify three recessive Ccα6 mutant alleles in the JW-100 s population: (i) Ccα63aQ68* containing a point mutation that generates a premature stop codon on exon 3a (3aQ68*); (ii) Ccα63aAG>AT containing a point mutation in the 5' splicing site of exon 3a (3aAG > AT); and (iii) Ccα63aQ68*-K352* that contains the mutation 3aQ68* and another point mutation on exon 10 (K352*). Though our analysis of the susceptibility to spinosad in field populations indicates that resistance has not yet evolved, a better understanding of the mechanism of action of spinosad is essential to implement sustainable management practices to avoid the development of resistance in field populations.


LY2087101 and dFBr share transmembrane binding sites in the (α4)3(β2)2 Nicotinic Acetylcholine Receptor.

  • Farah Deba‎ et al.
  • Scientific reports‎
  • 2018‎

Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChRs) have potential therapeutic application in neuropathologies associated with decrease in function or loss of nAChRs. In this study, we characterize the pharmacological interactions of the nAChRs PAM, LY2087101, with the α4β2 nAChR using mutational and computational analyses. LY2087101 potentiated ACh-induced currents of low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs with similar potencies albeit to a different maximum potentiation (potentiation I max  = ~840 and 450%, respectively). Amino acid substitutions within the α4 subunit transmembrane domain [e.g. α4Leu256 and α4Leu260 within the transmembrane helix 1 (TM1); α4Phe316 within the TM3; and α4Gly613 within TM4] significantly reduced LY2087101 potentiation of (α4)3(β2)2 nAChR. The locations of these amino acid residues and LY2087101 computational docking analyses identify two LY2087101 binding sites: an intrasubunit binding site within the transmembrane helix bundle of α4 subunit at the level of α4Leu260/α4Phe316 and intersubunit binding site at the α4:α4 subunit interface at the level of α4Leu256/α4Ile315 with both sites extending toward the extracellular end of the transmembrane domain. We also show that desformylflustrabromine (dFBr) binds to these two sites identified for LY2087101. These results provide structural information that are pertinent to structure-based design of nAChR allosteric modulators.


Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex.

  • Bo Tang‎ et al.
  • Scientific reports‎
  • 2015‎

Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium.


The mechanism of loop C-neonicotinoid interactions at insect nicotinic acetylcholine receptor α1 subunit predicts resistance emergence in pests.

  • Shota Shimada‎ et al.
  • Scientific reports‎
  • 2020‎

Neonicotinoids selectively modulate insect nicotinic acetylcholine receptors (insect nAChRs). Studies have shown that serine with ability to form a hydrogen bond in loop C of some insect nAChR α subunits and glutamate with a negative charge at the corresponding position in vertebrate nAChRs may contribute to enhancing and reducing the neonicotinoid actions, respectively. However, there is no clear evidence what loop C properties underpin the target site actions of neonicotinoids. Thus, we have investigated the effects of S221A and S221Q mutations in loop C of the Drosophila melanogaster Dα1 subunit on the agonist activity of imidacloprid and thiacloprid for Dα1/chicken β2 nAChRs expressed in Xenopus laevis oocytes. The S221A mutation hardly affected either the affinity or efficacy for ACh and imidacloprid, whereas it only slightly reduced the efficacy for thiacloprid on the nAChRs with a higher composition ratio of β2 to Dα1 subunits. The S221Q mutation markedly reduced the efficacy of the neonicotinoids for the nAChRs with a higher composition of the β2 subunit lacking basic residues critical for binding neonicotinoids. Hence, we predict the possibility of enhanced neonicotinoid resistance in pest insect species by a mutation of the serine when it occurs in the R81T resistant populations lacking the basic residue in loop D of the β1 subunit.


Behavioral changes after nicotine challenge are associated with α7 nicotinic acetylcholine receptor-stimulated glutamate release in the rat dorsal striatum.

  • In Soo Ryu‎ et al.
  • Scientific reports‎
  • 2017‎

Neurochemical alterations associated with behavioral responses induced by re-exposure to nicotine have not been sufficiently characterized in the dorsal striatum. Herein, we report on changes in glutamate concentrations in the rat dorsal striatum associated with behavioral alterations after nicotine challenge. Nicotine challenge (0.4 mg/kg/day, subcutaneous) significantly increased extracellular glutamate concentrations up to the level observed with repeated nicotine administration. This increase occurred in parallel with an increase in behavioral changes in locomotor and rearing activities. In contrast, acute nicotine administration and nicotine withdrawal on days 1 and 6 did not alter glutamate levels or behavioral changes. Blockade of α7 nicotinic acetylcholine receptors (nAChRs) significantly decreased the nicotine challenge-induced increases in extracellular glutamate concentrations and locomotor and rearing activities. These findings suggest that behavioral changes in locomotor and rearing activities after re-exposure to nicotine are closely associated with hyperactivation of the glutamate response by stimulating α7 nAChRs in the rat dorsal striatum.


Distribution and relative expression of vasoactive receptors on arteries.

  • Xinhao Liu‎ et al.
  • Scientific reports‎
  • 2020‎

Arterial tone is regulated by multiple ligand-receptor interactions, and its dysregulation is involved in ischemic conditions such as acute coronary spasm or syndrome. Understanding the distribution of vasoactive receptors on different arteries may help guide the development of tissue-specific vasoactive treatments against arterial dysfunction. Tissues were harvested from coronary, mesenteric, pulmonary, renal and peripheral human artery (n = 6 samples of each) and examined using a human antibody array to determine the expression of 29 vasoactive receptors and 3 endothelin ligands. Across all types of arteries, outer diameter ranged from 2.24 ± 0.63 to 3.65 ± 0.40 mm, and AVPR1A was the most abundant receptor. The expression level of AVPR1A in pulmonary artery was similar to that in renal artery, 2.2 times that in mesenteric artery, 1.9 times that in peripheral artery, and 2.2 times that in coronary artery. Endothelin-1 was expressed at significantly higher levels in pulmonary artery than peripheral artery (8.8 times), mesenteric artery (5.3 times), renal artery (7.9 times), and coronary artery (2.4 times). Expression of ADRA2B was significantly higher in coronary artery than peripheral artery. Immunohistochemistry revealed abundant ADRA2B in coronary artery, especially vessels with diameters below 50 μm, but not in myocardium. ADRA2C, in contrast, was expressed in both myocardium and blood vessels. The high expression of ADRA2B in coronary artery but not myocardium highlights the need to further characterize its function. Our results help establish the distribution and relative levels of tone-related receptors in different types of arteries, which may guide artery-specific treatments.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: