Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

  • Marta Słoniecka‎ et al.
  • PloS one‎
  • 2015‎

Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides/neurotransmitters are involved in cell proliferation, migration, and angiogenesis, it is possible that they play a role in corneal wound healing.


GPR88 reveals a discrete function of primary cilia as selective insulators of GPCR cross-talk.

  • Aaron Marley‎ et al.
  • PloS one‎
  • 2013‎

A number of G protein-coupled receptors (GPCRs) localize to primary cilia but the functional significance of cilia to GPCR signaling remains incompletely understood. We investigated this question by focusing on the D1 dopamine receptor (D1R) and beta-2 adrenergic receptor (B2AR), closely related catecholamine receptors that signal by stimulating production of the diffusible second messenger cyclic AMP (cAMP) but differ in localization relative to cilia. D1Rs robustly concentrate on cilia of IMCD3 cells, as shown previously in other ciliated cell types, but disrupting cilia did not affect D1R surface expression or ability to mediate a concentration-dependent cAMP response. By developing a FRET-based biosensor suitable for resolving intra- from extra- ciliary cAMP changes, we found that the D1R-mediated cAMP response is not restricted to cilia and extends into the extra-ciliary cytoplasm. Conversely the B2AR, which we show here is effectively excluded from cilia, also generated a cAMP response in both ciliary and extra-ciliary compartments. We identified a distinct signaling effect of primary cilia through investigating GPR88, an orphan GPCR that is co-expressed with the D1R in brain, and which we show here is targeted to cilia similarly to the D1R. In ciliated cells, mutational activation of GPR88 strongly reduced the D1R-mediated cAMP response but did not affect the B2AR-mediated response. In marked contrast, in non-ciliated cells, GPR88 was distributed throughout the plasma membrane and inhibited the B2AR response. These results identify a discrete 'insulating' function of primary cilia in conferring selectivity on integrated catecholamine signaling through lateral segregation of receptors, and suggest a cellular activity of GPR88 that might underlie its effects on dopamine-dependent behaviors.


Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

  • Michael J Pecaut‎ et al.
  • PloS one‎
  • 2017‎

The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA's Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.


Evidence for a critical role of catecholamines for cardiomyocyte lineage commitment in murine embryonic stem cells.

  • Martin Lehmann‎ et al.
  • PloS one‎
  • 2013‎

Catecholamine release is known to modulate cardiac output by increasing heart rate. Although much is known about catecholamine function and regulation in adults, little is known about the presence and role of catecholamines during heart development. The present study aimed therefore to evaluate the effects of different catecholamines on early heart development in an in vitro setting using embryonic stem (ES) cell-derived cardiomyocytes. Effects of catecholamine depletion induced by reserpine were examined in murine ES cells (line D3, αPIG44) during differentiation. Cardiac differentiation was assessed by immunocytochemistry, qRT-PCR, quantification of beating clusters, flow cytometry and pharmacological approaches. Proliferation was analyzed by EB cross-section measurements, while functionality of cardiomyocytes was studied by extracellular field potential (FP) measurements using microelectrode arrays (MEAs). To further differentiate between substance-specific effects of reserpine and catecholamine action via α- and β-receptors we proved the involvement of adrenergic receptors by application of unspecific α- and β-receptor antagonists. Reserpine treatment led to remarkable down-regulation of cardiac-specific genes, proteins and mesodermal marker genes. In more detail, the average ratio of ∼40% spontaneously beating control clusters was significantly reduced by 100%, 91.1% and 20.0% on days 10, 12, and 14, respectively. Flow cytometry revealed a significant reduction (by 71.6%, n = 11) of eGFP positive CMs after reserpine treatment. By contrast, reserpine did not reduce EB growth while number of neuronal cells in reserpine-treated EBs was significantly increased. MEA measurements of reserpine-treated EBs showed lower FP frequencies and weak responsiveness to adrenergic and muscarinic stimulation. Interestingly we found that developmental inhibition after α- and β-adrenergic blocker application mimicked developmental changes with reserpine. Using several methodological approaches our data suggest that reserpine inhibits cardiac differentiation. Thus catecholamines play a critical role during development.


Extraneuronal monoamine transporter mediates the permissive action of cortisol in the Guinea pig trachea: possible involvement of tracheal chondrocytes.

  • Chen Wang‎ et al.
  • PloS one‎
  • 2013‎

Cortisol, a member of glucocorticoids, could potentiate the action of catecholamine by a non-genomic mechanism. Although this permissive effect has been well appreciated in the anti-asthmatic medication, the underlying signaling pathway has remained mysterious. Here, we show that extraneuronal monoamine transporter (EMT), a membraneous reuptake transporter for circulating catecholamine clearance, is the direct target of cortisol in its permissive effect. We found that BSA-conjugated cortisol, which functions as a cortisol but cannot penetrate cell membrane, enhanced the spasmolytic effect of β-adrenoceptor agonist (isoprenaline) in histamine-sensitized tracheal spirals of guinea pigs, and pharmacological inhibition of EMT with famotidine was powerful enough to imitate the permissive action of cortisol. To our surprise, EMT protein expression was high in the chondrocytes of tracheal cartilage, but was undetectable in tracheal smooth muscle cells. The functionality of EMT was further confirmed with measurement of catecholamine uptake by tracheal chondrocytes. Moreover, cortisol-initiated membrane signaling could activate protein kinase C (PKC), which phosphorylates EMT and induces its internalization via a lipid raft-dependent pathway. Both of the mechanisms slow down the reuptake process by chondrocytes, leading to extracellular catecholamine accumulation and results in a more profound adrenergic signaling activation in tracheal smooth muscle cells. Thus, an EMT-centered pathway was proposed to explain the permissive action of cortisol. Collectively, our results highlight the role of EMT in the crosstalk between glucocorticoid and catecholamine. EMT may represent a promising target for adrenergic signaling modulation.


Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response.

  • Michael A Flierl‎ et al.
  • PloS one‎
  • 2009‎

Following our recent report that phagocytic cells (neutrophils, PMNs, and macrophages) are newly discovered sources of catecholamines, we now show that both epinephrine and norepinephrine directly activate NFkappaB in macrophages, causing enhanced release of proinflammatory cytokines (TNFalpha, IL-1beta, IL-6). Both adrenal-intact (AD+) and adrenalectomized (ADX) rodents were used, because ADX animals had greatly enhanced catecholamine release from phagocytes, facilitating our efforts to understand the role of catecholamines released from phagocytes. Phagocytes isolated from adrenalectomized rats displayed enhanced expression of tyrosine-hydroxylase and dopamine-beta-hydroxylase, two key enzymes for catecholamine production and exhibited higher baseline secretion of norepinephrine and epinephrine. The effects of upregulation of phagocyte-derived catecholamines were investigated in two models of acute lung injury (ALI). Increased levels of phagocyte-derived catecholamines were associated with intensification of the acute inflammatory response, as assessed by increased plasma leak of albumin, enhanced myeloperoxidase content in lungs, augmented levels of proinflammatory mediators in bronchoalveolar lavage fluids, and elevated expression of pulmonary ICAM-1 and VCAM-1. In adrenalectomized rats, development of ALI was enhanced and related to alpha(2)-adrenoceptors engagement but not to involvement of mineralocorticoid or glucocorticoid receptors. Collectively, these data demonstrate that catecholamines are potent inflammatory activators of macrophages, upregulating NFkappaB and further downstream cytokine production of these cells. In adrenalectomized animals, which have been used to further assess the role of catecholamines, there appears to be a compensatory increase in catecholamine generating enzymes and catecholamines in macrophages, resulting in amplification of the acute inflammatory response via engagement of alpha(2)-adrenoceptors.


Dopamine regulates angiogenesis in normal dermal wound tissues.

  • Saurav Shome‎ et al.
  • PloS one‎
  • 2011‎

Cutaneous wound healing is a normal physiological process and comprises different phases. Among these phases, angiogenesis or new blood vessel formation in wound tissue plays an important role. Skin is richly supplied by sympathetic nerves and evidences indicate the significant role of the sympathetic nervous system in cutaneous wound healing. Dopamine (DA) is an important catecholamine neurotransmitter released by the sympathetic nerve endings and recent studies have demonstrated the potent anti-angiogenic action of DA, which is mediated through its D(2) DA receptors. We therefore postulate that this endogenous catecholamine neurotransmitter may have a role in the neovascularization of dermal wound tissues and subsequently in the process of wound healing. In the present study, the therapeutic efficacy of D(2) DA receptor antagonist has been investigated for faster wound healing in a murine model of full thickness dermal wound. Our results indicate that treatment with specific D(2) DA receptor antagonist significantly expedites the process of full thickness normal dermal wound healing in mice by inducing angiogenesis in wound tissues. The underlined mechanisms have been attributed to the up-regulation of homeobox transcription factor HoxD3 and its target α5β1 integrin, which play a pivotal role in wound angiogenesis. Since D(2) DA receptor antagonists are already in clinical use for other disorders, these results have significant translational value from the bench to the bedside for efficient wound management along with other conventional treatment modalities.


The complement anaphylatoxin C5a induces apoptosis in adrenomedullary cells during experimental sepsis.

  • Michael A Flierl‎ et al.
  • PloS one‎
  • 2008‎

Sepsis remains a poorly understood, enigmatic disease. One of the cascades crucially involved in its pathogenesis is the complement system. Especially the anaphylatoxin C5a has been shown to have numerous harmful effects during sepsis. We have investigated the impact of high levels of C5a on the adrenal medulla following cecal ligation and puncture (CLP)-induced sepsis in rats as well as the role of C5a on catecholamine production from pheochromocytoma-derived PC12 cells. There was significant apoptosis of adrenal medulla cells in rats 24 hrs after CLP, as assessed by the TUNEL technique. These effects could be reversed by dual-blockade of the C5a receptors, C5aR and C5L2. When rats were subjected to CLP, levels of C5a and norepinephrine were found to be antipodal as a function of time. PC12 cell production of norepinephrine and dopamine was significantly blunted following exposure to recombinant rat C5a in a time-dependent and dose-dependent manner. This impaired production could be related to C5a-induced initiation of apoptosis as defined by binding of Annexin V and Propidium Iodine to PC12 cells. Collectively, we describe a C5a-dependent induction of apoptotic events in cells of adrenal medulla in vivo and pheochromocytoma PC12 cells in vitro. These data suggest that experimental sepsis induces apoptosis of adrenomedullary cells, which are responsible for the bulk of endogenous catecholamines. Septic shock may be linked to these events. Since blockade of both C5a receptors virtually abolished adrenomedullary apoptosis in vivo, C5aR and C5L2 become promising targets with implications on future complement-blocking strategies in the clinical setting of sepsis.


Sex differences in sympathetic gene expression and cardiac neurochemistry in Wistar Kyoto rats.

  • Richard G Bayles‎ et al.
  • PloS one‎
  • 2019‎

The stellate ganglia are the predominant source of sympathetic innervation to the heart. Remodeling of sympathetic nerves projecting to the heart has been observed in several cardiovascular diseases, and sympathetic dysfunction contributes to cardiac pathology. Wistar Kyoto rats are a common model for the study of cardiovascular diseases, but we lack a profile of the baseline transcriptomic and neurochemical characteristics of their cardiac sympathetic neurons. Most studies of cardiovascular disease have used male animals only, but in the future both male and female animals will be used for these types of studies; therefore, we sought to characterize the transcriptome of male and female stellate ganglia and to correlate that with catecholamine and acetylcholine content in the heart. We have generated a dataset of baseline RNA expression in male and female Wistar Kyoto rat stellate ganglia using RNA-seq, and have measured neurotransmitter levels in heart and stellate ganglia using HPLC and mass spectrometry. We identified numerous gene expression differences between male and female stellates, including genes encoding important developmental factors, receptors and neuropeptides. Female hearts had significantly higher neurotransmitter content than male hearts; however, no significant differences were detected in expression of the genes encoding neurotransmitter synthetic enzymes. Similarly, no statistically significant differences were identified between the sexes in cardiac tyrosine hydroxylase levels.


A trigeminoreticular pathway: implications in pain.

  • W Michael Panneton‎ et al.
  • PloS one‎
  • 2011‎

Neurons in the caudalmost ventrolateral medulla (cmVLM) respond to noxious stimulation. We previously have shown most efferent projections from this locus project to areas implicated either in the processing or modulation of pain. Here we show the cmVLM of the rat receives projections from superficial laminae of the medullary dorsal horn (MDH) and has neurons activated with capsaicin injections into the temporalis muscle. Injections of either biotinylated dextran amine (BDA) into the MDH or fluorogold (FG)/fluorescent microbeads into the cmVLM showed projections from lamina I and II of the MDH to the cmVLM. Morphometric analysis showed the retrogradely-labeled neurons were small (area 88.7 µm(2)±3.4) and mostly fusiform in shape. Injections (20-50 µl) of 0.5% capsaicin into the temporalis muscle and subsequent immunohistochemistry for c-Fos showed nuclei labeled in the dorsomedial trigeminocervical complex (TCC), the cmVLM, the lateral medulla, and the internal lateral subnucleus of the parabrachial complex (PBil). Additional labeling with c-Fos was seen in the subnucleus interpolaris of the spinal trigeminal nucleus, the rostral ventrolateral medulla, the superior salivatory nucleus, the rostral ventromedial medulla, and the A1, A5, A7 and subcoeruleus catecholamine areas. Injections of FG into the PBil produced robust label in the lateral medulla and cmVLM while injections of BDA into the lateral medulla showed projections to the PBil. Immunohistochemical experiments to antibodies against substance P, the substance P receptor (NK1), calcitonin gene regulating peptide, leucine enkephalin, VRL1 (TPRV2) receptors and neuropeptide Y showed that these peptides/receptors densely stained the cmVLM. We suggest the MDH- cmVLM projection is important for pain from head and neck areas. We offer a potential new pathway for regulating deep pain via the neurons of the TCC, the cmVLM, the lateral medulla, and the PBil and propose these areas compose a trigeminoreticular pathway, possibly the trigeminal homologue of the spinoreticulothalamic pathway.


The dopamine metabolite 3-methoxytyramine is a neuromodulator.

  • Tatyana D Sotnikova‎ et al.
  • PloS one‎
  • 2010‎

Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.


Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via β3AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia.

  • Hisashi Nagai‎ et al.
  • PloS one‎
  • 2015‎

Chronic intermittent hypoxia (IH) induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV) via central β1-adrenergic receptors (AR) (brain) and peripheral β2AR (pulmonary arteries). Prolonged hypercatecholemia has been shown to upregulate β3AR. However, the relationship between IH and β3AR in the modification of HPV is unknown. It has been observed that chronic stimulation of β3AR upregulates inducible nitric oxide synthase (iNOS) in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates β3AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4-21% O2) for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of pro-inflammatory pulmonary macrophages. In these macrophages, both β3AR and iNOS were upregulated and stimulation of the β3AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of β3AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of β3AR/iNOS signaling in chronic IH.


Decoding the substrate supply to human neuronal nitric oxide synthase.

  • Alexandra Simon‎ et al.
  • PloS one‎
  • 2013‎

Nitric oxide, produced by the neuronal nitric oxide synthase (nNOS) from L-arginine is an important second messenger molecule in the central nervous system: It influences the synthesis and release of neurotransmitters and plays an important role in long-term potentiation, long-term depression and neuroendocrine secretion. However, under certain pathological conditions such as Alzheimer's or Parkinson's disease, stroke and multiple sclerosis, excessive NO production can lead to tissue damage. It is thus desirable to control NO production in these situations. So far, little is known about the substrate supply to human nNOS as a determinant of its activity. Measuring bioactive NO via cGMP formation in reporter cells, we demonstrate here that nNOS in both, human A673 neuroepithelioma and TGW-nu-I neuroblastoma cells can be fast and efficiently nourished by extracellular arginine that enters the cells via membrane transporters (pool I that is freely exchangeable with the extracellular space). When this pool was depleted, NO synthesis was partially sustained by intracellular arginine sources not freely exchangeable with the extracellular space (pool II). Protein breakdown made up by far the largest part of pool II in both cell types. In contrast, citrulline to arginine conversion maintained NO synthesis only in TGW-nu-I neuroblastoma, but not A673 neuroepithelioma cells. Histidine mimicked the effect of protease inhibitors causing an almost complete nNOS inhibition in cells incubated additionally in lysine that depletes the exchangeable arginine pool. Our results identify new ways to modulate nNOS activity by modifying its substrate supply.


Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation.

  • Bin Wang‎ et al.
  • PloS one‎
  • 2017‎

Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson's trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230A. Our study suggested that aerobic exercise training could improve cardiac systolic function and alleviate LV chamber dilation, cardiac fibrosis and hypertrophy in HF mice. The mechanism responsible for the protective effects of aerobic exercise is associated with the activation of the β3-AR-nNOS-NO pathway.


Adaptive versus maladaptive cardiac remodelling in response to sustained β-adrenergic stimulation in a new 'ISO on/off model'.

  • Stefanie Maria Werhahn‎ et al.
  • PloS one‎
  • 2021‎

On the one hand, sustained β-adrenergic stress is a hallmark of heart failure (HF) and exerts maladaptive cardiac remodelling. On the other hand, acute β-adrenergic stimulation maintains cardiac function under physiological stress. However, it is still incompletely understood to what extent the adaptive component of β-adrenergic signaling contributes to the maintenance of cardiac function during chronic β-adrenergic stress. We developed an experimental catecholamine-based protocol to distinguish adaptive from maladaptive effects. Mice were for 28 days infused with 30 mg/kg body weight/day isoproterenol (ISO) by subcutaneously implanted osmotic minipumps ('ISO on'). In a second and third group, ISO infusion was stopped after 26 days and the mice were observed for additional two or seven days without further ISO infusion ('ISO off short', 'ISO off long'). In this setup, 'ISO on' led to cardiac hypertrophy and slightly improved cardiac contractility. In stark contrast, 'ISO off' mice displayed progressive worsening of left ventricular ejection fraction that dropped down below 40%. While fetal and pathological gene expression (increase in Nppa, decrease in Myh6/Myh7 ratios, increase in Xirp2) was not induced in 'ISO on', it was activated in 'ISO off' mice. After ISO withdrawal, phosphorylation of phospholamban (PLN) at the protein kinase A (PKA) phosphorylation site Ser-16 dropped down to 20% as compared to only 50% at the Ca2+/Calmodulin-dependent kinase II (CaMKII) phosphorylation site Thr-17 in 'ISO off' mice. PKA-dependent cardioprotective production of the N-terminal proteolytic product of histone deacetylase 4 (HDAC4-NT) was reduced in 'ISO off' as compared to 'ISO on'. Taken together, these data indicate that chronic ISO infusion induces besides maladaptive remodelling also adaptive PKA signalling to maintain cardiac function. The use of the 'ISO on/off' model will further enable the separation of the underlying adaptive from maladaptive components of β-adrenergic signalling and may help to better define and test therapeutic targets downstream of β-adrenergic receptors.


Intervention changes acoustic peak frequency and mesolimbic neurochemistry in the Pink1-/- rat model of Parkinson disease.

  • Sharon A Stevenson‎ et al.
  • PloS one‎
  • 2019‎

The neural mechanisms underlying behavioral therapy for vocal acoustic deficits in patients with Parkinson disease is unknown. A primary hypothesis is that voice therapy may modulate mesolimbic brainstem regions, including the ventral tegmental area (VTA). The VTA is implicated in ultrasonic call peak frequency, involved in rewarding behaviors, and impacted by Parkinsonism. We tested the hypothesis that chronic (daily) behavioral vocal exercise of male Pink1-/- rats would alter ultrasonic vocalization acoustics and mesolimbic neurochemistry (catecholamines, GABA, mu-opioid receptor) compared to three different controls: sham-exercised Pink1-/-, unexercised Pink1-/-, and unexercised wildtype (WT) rats. A sub-hypothesis is that sham-exercise rats may exhibit changes to VTA neurochemistry as a result of a type or rewarding intervention. Results demonstrate that average bandwidth (frequency range) of ultrasonic vocalizations did not differ between WT, Pink1-/- no exercise vs. sham and vocal-exercise rats. However, average peak frequency is significantly reduced in vocal-exercised Pink1-/- rats compared to Pink1-/- no exercise, and WT groups. Unexpectedly, there were no significant acoustic differences between the vocal- and sham-exercised groups. There were no differences in catecholamine protein concentrations or tyrosine hydroxylase mRNA expression in the VTA between any of the groups. However, there was significant upregulation of all GABA-related genes in both vocal- and sham-exercised Pink1-/- rats (Gad1, Gad2, Gls, Glul); this finding was confirmed with follow up quantitative Western blotting for GAD. Additionally, there were differential results for mu-opioid receptor quantification in the VTA: vocal-exercised Pink1-/- rats showed increased mRNA expression for mu-opioid receptors whereas Western blotting indicated decreased protein levels in all Pink1-/- rats compared to WT controls suggesting the possible onset of pathology in this model. These data demonstrate modulatory effects of a rewarding behavioral paradigm on ultrasonic vocalization peak frequency. The results suggest that neuromodulators such as GABA and opioid activity, as well as the rewarding aspects of therapy may play a key role in shaping vocal treatments.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: