Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats.

  • M-Y Min‎ et al.
  • Neuroscience‎
  • 2008‎

The A7 catecholamine cell group consists of noradrenergic (NAergic) neurons that project to the dorsal horn of the spinal cord. Here, we characterized their morphology and physiology properties and tested the effect of substance P (Sub-P) on them, since the results of many morphological studies suggest that A7 neurons are densely innervated by Sub-P-releasing terminals from nuclei involved in the descending inhibitory system, such as the lateral hypothalamus and periaqueductal gray area. Whole cell recordings were made from neurons located approximately 200 microm rostral to the trigeminal motor nucleus (the presumed A7 area) in sagittal brainstem slices from rats aged 7-10 days. After recording, the neurons were injected with biocytin and immunostained with antibody against dopamine-beta-hydroxylase (DBH). DBH-immunoreactive (ir) cells were presumed to be NAergic neurons. They had a large somata diameter ( approximately 20 microm) and relatively simple dendritic branching patterns. They fired action potentials (AP) spontaneously with or without blockade of synaptic inputs, and had similar properties to those of NAergic neurons in other areas, including the existence of calcium channel-mediated APs and a voltage-dependent delay in initiation of the AP (an indicator of the existence of A-type potassium currents) and an ability to be hyperpolarized by norepinephrine. Furthermore, in all DBH-ir neurons tested, Sub-P caused depolarization of the membrane potential and an increase in neuronal firing rate by acting on neurokinin-1 receptors. Non-DBH-ir neurons with a smaller somata size were also found in the A7 area. These showed great diversity in firing patterns and about half were depolarized by Sub-P. Morphological examination suggested that the non-DBH-ir neurons form contacts with DBH-ir neurons. These results provide the first description of the intrinsic regulation of membrane properties of, and the excitatory effect of Sub-P on, A7 area neurons, which play an important role in pain regulation.


Predominant surface distribution of neurokinin-3 receptors in non-dopaminergic dendrites in the rat substantia nigra and ventral tegmental area.

  • A Lessard‎ et al.
  • Neuroscience‎
  • 2007‎

Neurokinin-3 (NK(3)) receptors are prevalent within the substantia nigra (SN) and ventral tegmental area (VTA), where their activation can affect motor and motivational behaviors as well as cardiovascular function and stress responses. These actions are mediated, in part, by dopaminergic neurons in each region. To determine the relevant sites for activation of these receptors, we examined the electron microscopic localization of NK(3) receptors and tyrosine hydroxylase (TH), the catecholamine synthesizing enzyme in dopaminergic neurons in the SN and VTA of rat brain. In each region, immunogold-silver labeling for NK(3) receptors was detected in many somatodendritic profiles, some of which contained TH-immunoreactivity. NK(3)-immunogold particles were largely associated with endomembranes resembling smooth endoplasmic reticulum, and only occasionally located on the plasma membrane in TH-labeled dendrites. In comparison with these dendrites, non-TH immunoreactive dendrites contained significantly more total (VTA) and more plasmalemmal (VTA and SN) NK(3)-immunogold particles. In each region, NK(3) gold particles also were seen in axonal as well as glial profiles, some of which contacted TH-immunoreactive dendrites. The NK(3)-labeled axon terminals formed either symmetric or asymmetric, excitatory-type synapses, the latter of which were significantly more prevalent in the VTA, compared with SN. These results provide the first ultrastructural evidence indicating that NK(3) receptors are available in cytoplasmic reserve in dopaminergic neurons, but more immediately accessible at the plasmalemmal surface of non-dopaminergic dendrites in both the SN and VTA. The activation of these receptors, together with the NK(3) receptors in either the presynaptic axon terminals or glia may contribute to the diverse physiological effects of tachykinins in each region, and most prominently involving excitatory inputs to the VTA.


Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75.

  • J L Hoard‎ et al.
  • Neuroscience‎
  • 2008‎

Half of the cholinergic neurons of human and primate intrinsic cardiac ganglia (ICG) have a dual cholinergic/noradrenergic phenotype. Likewise, a large subpopulation of cholinergic neurons of the mouse heart expresses enzymes needed for synthesis of norepinephrine (NE), but they lack the vesicular monoamine transporter type 2 (VMAT2) required for catecholamine storage. In the present study, we determined the full scope of noradrenergic properties (i.e. synthetic enzymes and transporters) expressed by cholinergic neurons of mouse ICG, estimated the relative abundance of neurons expressing different elements of the noradrenergic phenotype, and evaluated the colocalization of cholinergic and noradrenergic markers in atrial nerve fibers. Stellate ganglia were used as a positive control for noradrenergic markers. Using fluorescence immunohistochemistry and confocal microscopy, we found that about 30% of cholinergic cell bodies contained tyrosine hydroxylase (TH), including the activated form that is phosphorylated at Ser-40 (pSer40 TH). Dopamine beta-hydroxylase (DBH) and norepinephrine transporter (NET) were present in all cholinergic somata, indicating a wider capability for dopamine metabolism and catecholamine uptake. Yet, cholinergic somata lacked VMAT2, precluding the potential for NE storage and vesicular release. In contrast to cholinergic somata, cardiac nerve fibers rarely showed colocalization of cholinergic and noradrenergic markers. Instead, these labels were closely apposed but clearly distinct from each other. Since cholinergic somata expressed several noradrenergic proteins, we questioned whether these neurons might also contain trophic factor receptors typical of noradrenergic neurons. Indeed, we found that all cholinergic cell bodies of mouse ICG, like noradrenergic cell bodies of the stellate ganglia, contained both tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptors. Collectively, these findings demonstrate that mouse intrinsic cardiac neurons (ICNs), like those of humans, have a complex neurochemical phenotype that goes beyond the classical view of cardiac parasympathetic neurons. They also suggest that neurotrophins and local NE synthesis might have important effects on neurons of the mouse ICG.


Angiotensin II AT-1A receptor immunolabeling in rat medial nucleus tractus solitarius neurons: subcellular targeting and relationships with catecholamines.

  • M J Glass‎ et al.
  • Neuroscience‎
  • 2005‎

The angiotensin II AT-1A receptor (AT-1A) is the major mediator of the hypertensive actions of angiotensin II (ANG II) in the medial nucleus of the solitary tract (mNTS). The localization of the AT-1A receptor at surface or intracellular sites is an important determinant of its signaling properties, including intercellular or intracrine communication. However, the spatial localization of this protein, particularly within small distal or intermediate size dendrites of mNTS neurons, is unknown. Within the mNTS, ANG II and catecholamines interact in the regulation of autonomic function; however, it is unknown if AT-1A receptors are present at functional sites in catecholamine containing dendrites, or are contacted by catecholamine containing axon terminals. We compared surface and intracellular distributions of the AT-1A receptor in dendritic processes from the mNTS using immunogold electron microscopy in conjunction with immunoperoxidase labeling for tyrosine hydroxylase (TH) and morphometric analysis. Collapsed across all AT-1A-labeled dendritic profiles, immunogold labeling was more frequent in intracellular sites as compared with the plasma membrane. Small (<0.6 microm) dendritic profiles contained a higher ratio of particles associated with the surface membrane when compared with larger profiles. Approximately 27% of all AT-1A receptor-labeled dendritic profiles also contained labeling for TH. Approximately 12% of dendritic profiles single labeled for the AT-1A receptor were contacted by TH containing axons or axon terminals. The present results provide the first quantitative demonstration of select plasmalemmal and intracellular localizations of AT-1A receptors in dendritic processes of mNTS neurons, including those containing TH, or contacted by catecholaminergic axon terminals. These results suggest that AT-1A receptors are positioned for modulation of catecholamine signaling in the mNTS.


Information processing in brainstem bitter taste-relaying neurons defined by genetic tracing.

  • M Sugita‎ et al.
  • Neuroscience‎
  • 2013‎

Bitter reception is mediated by taste receptor cells that coexpress multiple T2Rs, a family of G-protein-coupled receptors. However, it remains elusive how bitter taste information is translated in the brain into appropriate behavioral responses. Here we used a combination of genetic tracing and electrophysiological and immunohistochemical analyses in mice to functionally characterize the neurons in the solitary tract nuclei of the medulla, which receive input from mT2R5-expressing cells. The neurons defined by a transneuronal tracer originating from mT2R5-expressing cells receive glutamatergic synaptic input via the AMPA receptor. The satiety peptide cholecystokinin increases glutamatergic transmission, suggesting an interaction between information processing of taste and the homeostatic control of feeding. Nevertheless, the tracer-labeled neuron types are heterogeneous, and can be classified into catecholamine and pro-opiomelanocortin neurons. Our data reveal that the architectural solution in the first-order central relay that processes information from mT2R5-expressing cells uses unique ensembles of neurons with different neurotransmitters.


Bidirectional modulation of nociception by GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit spinally projecting noradrenergic A7 neurons.

  • K Nuseir‎ et al.
  • Neuroscience‎
  • 2000‎

The A7 catecholamine cell group in the dorsolateral pontine tegmentum constitutes an important part of the descending pathways that modulate nociception. Evidence from immunocytochemical studies demonstrate that noradrenergic A7 neurons are densely innervated by GABA terminals arising from GABA neurons that are located in the dorsolateral pontine tegmentum medial to the A7 cell group. GABA(A) receptors are also located on the somata and dendrites of noradrenergic A7 neurons. These findings suggest that noradrenergic neurons in the A7 cell group may be under tonic inhibitory control by GABA neurons. To test this hypothesis, the GABA(A) antagonist bicuculline methiodide in doses of 0.2 or 1.0nmol was microinjected into sites located dorsal to the A7 cell group and the resulting effects on tail flick and nociceptive foot withdrawal responses were measured. Both doses of bicuculline produced significant increases in tail flick latencies and small, but significant, increases in foot withdrawal latencies. Intrathecal injection of the alpha(2)-adrenoceptor antagonist yohimbine, in a dose of 76.7nmol (30microg), attenuated the antinociceptive effect of bicuculline on both the tail and the feet. In contrast, the alpha(1)-adrenoceptor antagonist WB4101, in a nearly equimolar dose of 78.6nmol (30microg), increased the antinociceptive effect of bicuculline on both the tail and the feet. Intrathecal injection of the antagonists alone did not consistently alter nociceptive responses of either the feet or the tail. These findings suggest that noradrenergic neurons in the A7 cell group are tonically inhibited by local GABA neurons. Furthermore, these findings suggest that inhibition of GABA(A) receptors located on spinally-projecting A7 noradrenergic neurons disinhibits, or activates, two populations of A7 neurons that have opposing effects on nociception. One of these populations facilitates nociception by an action mediated by alpha(1)-adrenoceptors in the spinal cord dorsal horn and the other population inhibits nociception by an action mediated by alpha(2)-adrenoceptors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: