Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 518 papers

System-specific periodicity in quantitative real-time polymerase chain reaction data questions threshold-based quantitation.

  • Andrej-Nikolai Spiess‎ et al.
  • Scientific reports‎
  • 2016‎

Real-time quantitative polymerase chain reaction (qPCR) data are found to display periodic patterns in the fluorescence intensity as a function of sample number for fixed cycle number. This behavior is seen for technical replicate datasets recorded on several different commercial instruments; it occurs in the baseline region and typically increases with increasing cycle number in the growth and plateau regions. Autocorrelation analysis reveals periodicities of 12 for 96-well systems and 24 for a 384-well system, indicating a correlation with block architecture. Passive dye experiments show that the effect may be from optical detector bias. Importantly, the signal periodicity manifests as periodicity in quantification cycle (Cq) values when these are estimated by the widely applied fixed threshold approach, but not when scale-insensitive markers like first- and second-derivative maxima are used. Accordingly, any scale variability in the growth curves will lead to bias in constant-threshold-based Cqs, making it mandatory that workers should either use scale-insensitive Cqs or normalize their growth curves to constant amplitude before applying the constant threshold method.


Simple and rapid detection of common fetal aneuploidies using peptide nucleic acid probe-based real-time polymerase chain reaction.

  • Subeen Hong‎ et al.
  • Scientific reports‎
  • 2022‎

To examine the detection performance of a peptide nucleic acid (PNA) probe-based real-time time polymerase chain reaction (PCR) assay to detect common aneuploidies. Using amniotic fluid samples, PNA probe based real-time PCR (Patio DEP Detection Kit; SeaSun Biomaterials, Korea) assay was performed. PNA probe was designed to hybridize to similar sequences located on different segments of target chromosomes (21, 18, and 13) and a reference chromosome. Amplification of target sequences and melting curve analysis was performed. When analyzing the melting curve, the ratio of the peak height of the target and reference chromosome was calculated and determined as aneuploidy if the ratio of peak height was abnormal. All the results from the PNA probe-based real-time PCR and melting curve analyses were compared to those from conventional karyotyping. Forty-two cases with common aneuploidies (24 of trisomy 21, 12 of trisomy 18, and 6 of trisomy 13) and 131 cases with normal karyotype were analyzed. When comparing the karyotyping results, the sensitivity and specificity of the PNA probe-based real-time PCR assay were both 100%. The level of agreement was almost perfect (k = 1.00). PNA real-time PCR assay is a rapid and easy method for detecting common aneuploidies.


Evaluation of mobile real-time polymerase chain reaction tests for the detection of severe acute respiratory syndrome coronavirus 2.

  • Chukwunonso Onyilagha‎ et al.
  • Scientific reports‎
  • 2021‎

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), calls for prompt and accurate diagnosis and rapid turnaround time for test results to limit transmission. Here, we evaluated two independent molecular assays, the Biomeme SARS-CoV-2 test, and the Precision Biomonitoring TripleLock SARS-CoV-2 test on a field-deployable point-of-care real-time PCR instrument, Franklin three9, in combination with Biomeme M1 Sample Prep Cartridge Kit for RNA 2.0 (M1) manual extraction system for rapid, specific, and sensitive detection of SARS-COV-2 in cell culture, human, and animal clinical samples. The Biomeme SARS-CoV-2 assay, which simultaneously detects two viral targets, the orf1ab and S genes, and the Precision Biomonitoring TripleLock SARS-CoV-2 assay that targets the 5' untranslated region (5' UTR) and the envelope (E) gene of SARS-CoV-2 were highly sensitive and detected as low as 15 SARS-CoV-2 genome copies per reaction. In addition, the two assays were specific and showed no cross-reactivity with Middle Eastern respiratory syndrome coronavirus (MERS-CoV), infectious bronchitis virus (IBV), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis (TGE) virus, and other common human respiratory viruses and bacterial pathogens. Also, both assays were highly reproducible across different operators and instruments. When used to test animal samples, both assays equally detected SARS-CoV-2 genetic materials in the swabs from SARS-CoV-2-infected hamsters. The M1 lysis buffer completely inactivated SARS-CoV-2 within 10 min at room temperature enabling safe handling of clinical samples. Collectively, these results show that the Biomeme and Precision Biomonitoring TripleLock SARS-CoV-2 mobile testing platforms could reliably and promptly detect SARS-CoV-2 in both human and animal clinical samples in approximately an hour and can be used in remote areas or health care settings not traditionally serviced by a microbiology laboratory.


Selecting Appropriate Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Studies in Isolated and Cultured Ocular Surface Epithelia.

  • Sara I Van Acker‎ et al.
  • Scientific reports‎
  • 2019‎

The introduction of tissue engineering has allowed scientists to push the boundaries and treat seriously damaged ocular surface epithelia. They have managed to do this through the development of biological substitutes that restore, maintain or improve tissue function. To ensure the generation of a therapeutically safe and effective graft, knowledge on the transcriptional profile of native and cultured ocular surface epithelia is of undeniable value. Gene expression studies are, however, only as reliable as their proper selection of internal reaction controls or reference genes. In this study, we determined the expression stability of a number of reference genes: 18s rRNA, ACTB, ATP5B, CyC1, EIF4A2, GAPDH, RPL13A, SDHA, TOP1, UBC, and YWHAZ in primary isolates as well as in ex vivo cultured ocular surface epithelia explants (day 0 and/or day 14). Expression stability of the reference genes was assessed with both the geNorm and NormFinder software that use a pairwise comparison and a model-based approach, respectively. Our results extend the general recommendation of using multiple reference genes for normalization purposes to our model systems and provide an overview of several references genes that are likely to be stable in similar culture protocols.


The diagnostic performance evaluation of Panbio and STANDARD Q coronavirus disease 2019 antigen tests against real-time polymerase chain reaction in southern Ethiopia.

  • Elias Tamene‎ et al.
  • Scientific reports‎
  • 2024‎

The coronavirus disease 2019 (COVID-19) pandemic has created a public health crisis. This study aimed to evaluate the diagnostic performance of the Panbio and STANDARD Q COVID-19 antigen rapid diagnostic tests (RDTs) against the real-time polymerase chain reaction (RT-PCR) at one of the largest hospitals in southern Ethiopia. Nasopharyngeal samples, which were collected during the pandemic from individuals suspected of COVID-19 and stored at - 70 °C, were analyzed in June and July 2022. The performance of the Panbio COVID-19 antigen tests was evaluated in 200 randomly selected nasopharyngeal samples (100 positives and 100 negatives for severe acute respiratory syndrome 2 by RT-PCR). The STANDARD Q test was evaluated using 100 positive and 50 negative samples. The respective sensitivity, specificity, positive predictive value and negative predictive values were 88%, 99%, 98.9% and 89.2% for the Panbio test and 91%, 98%, 98.9% and 84.5%, for the STANDARD Q test. The kappa values were 0.87 for the Panbio and 0.86 for the STANDARD Q test. Based on the findings presented here, the RDTs could be utilized as an alternative to conventional RT-PCR when it is challenging to diagnose COVID-19 owing to a lack of time, skilled lab personnel, or suitable equipment or electricity.


Raman Spectroscopy vs Quantitative Polymerase Chain Reaction In Early Stage Huanglongbing Diagnostics.

  • Lee Sanchez‎ et al.
  • Scientific reports‎
  • 2020‎

Raman spectroscopy (RS) is an emerging analytical technique that can be used to develop and deploy precision agriculture. RS allows for confirmatory diagnostic of biotic and abiotic stresses on plants. Specifically, RS can be used for Huanglongbing (HLB) diagnostics on both orange and grapefruit trees, as well as detection and identification of various fungal and viral diseases. The questions that remain to be answered is how early can RS detect and identify the disease and whether RS is more sensitive than qPCR, the "golden standard" in pathogen diagnostics? Using RS and HLB as case study, we monitored healthy (qPCR-negative) in-field grown citrus trees and compared their spectra to the spectra collected from healthy orange and grapefruit trees grown in a greenhouse with restricted insect access and confirmed as HLB free by qPCR. Our result indicated that RS was capable of early prediction of HLB and that nearly all in-field qPCR-negative plants were infected by the disease. Using advanced multivariate statistical analysis, we also showed that qPCR-negative plants exhibited HLB-specific spectral characteristics that can be distinguished from unrelated nutrition deficit characteristics. These results demonstrate that RS is capable of much more sensitive diagnostics of HLB compared to qPCR.


A quantitative reverse transcription-polymerase chain reaction for detection of Getah virus.

  • Sing-Sin Sam‎ et al.
  • Scientific reports‎
  • 2018‎

Getah virus (GETV), a mosquito-borne alphavirus, is an emerging animal pathogen causing outbreaks among racehorses and pigs. Early detection of the GETV infection is essential for timely implementation of disease prevention and control interventions. Thus, a rapid and accurate nucleic acid detection method for GETV is highly needed. Here, two TaqMan minor groove binding (MGB) probe-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays were developed. The qRT-PCR primers and TaqMan MGB probe were designed based on the conserved region of nsP1 and nsP2 genes of 23 GETV genome sequences retrieved from GenBank. Only the qRT-PCR assay using nsP2-specific primers and probe detected all two Malaysia GETV strains (MM2021 and B254) without cross-reacting with other closely related arboviruses. The qRT-PCR assay detected as few as 10 copies of GETV RNA, but its detection limit at the 95% probability level was 63.25 GETV genome copies (probit analysis, P ≤ 0.05). Further validation of the qRT-PCR assay using 16 spiked simulated clinical specimens showed 100% for both sensitivity and specificity. In conclusion, the qRT-PCR assay developed in this study is useful for rapid, sensitive and specific detection and quantification of GETV.


In-house reverse transcriptase polymerase chain reaction for detection of SARS-CoV-2 with increased sensitivity.

  • Manash Jyoti Kalita‎ et al.
  • Scientific reports‎
  • 2021‎

As the COVID-19 infection continues to ravage the world, the advent of an efficient as well as the economization of the existing RT-PCR based detection assay essentially can become a blessing in these testing times and significantly help in the management of the pandemic. This study demonstrated an innovative and rapid corroboration of COVID-19 test based on innovative multiplex PCR. An assessment of optimal PCR conditions to simultaneously amplify the SARS-CoV-2 genes E, S and RdRp has been made by fast-conventional and HRM coupled multiplex real-time PCR using the same sets of primers. All variables of practical value were studied by amplifying known target-sequences from ten-fold dilutions of archived positive samples of COVID-19 disease. The multiplexing with newly designed E, S and RdRp primers have shown an efficient amplification of the target region of SARS-CoV-2. A distinct amplification was observed in 37 min using thermal cycler while it took 96 min in HRM coupled real time detection using SYBR green over a wide range of template concentrations. Our findings revealed decent concordance with other commercially available detection kits. This fast HRM coupled multiplex real-time PCR with SYBR green approach offers rapid and sensitive detection of SARS-CoV-2 in a cost-effective manner apart from the added advantage of primer compatibility for use in conventional multiplex PCR. The highly reproducible novel approach can propel extended applicability for developing sustainable commercial product besides providing relief to a resource limited setting.


Multiplex polymerase chain reaction for pathogen detection in donor/recipient corneal transplant tissue and donor storage solution.

  • Takehiro Hariya‎ et al.
  • Scientific reports‎
  • 2017‎

Corneal transplantation is a safe, reliable method of restoring visual acuity in patients with corneal disorders. Although it has a very high success rate, rejection can still occur, especially if the site is infected. Therefore, seeking to find better ways to manage infection risk, this study investigated a new technique, based on multiplex polymerase chain reaction (mPCR), to identify pathogens, including viruses, bacteria, and fungi, in corneal transplantation recipient sites, donor corneas and the donor cornea storage solution. The subjects comprised 50 patients who underwent corneal transplantation at Tohoku University Hospital between July 2014 and April 2015. We obtained extracted (recipient) cornea samples in 37 cases, donor cornea samples in 50 cases, and corneal storage solution samples in 50 cases (18 of these 50 samples contained DNA). Herpes simplex virus type 1 DNA was detected in four recipient corneas, Parvovirus B19 DNA was detected in two recipient corneas, Human herpes virus type 6 was detected in two donor corneas, and Aspergillus DNA was detected in one corneal storage solution sample. Thus, mPCR successfully identified pathogenic DNA in corneal tissues and storage solution, suggesting that evaluation with mPCR may improve the ability to predict the risk of infection after corneal transplantation.


The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction.

  • Daichi Nakamura‎
  • Scientific reports‎
  • 2023‎

In regenerative medicine, the tumorigenic potency of cells in cellular therapy products (CTPs) is a major concern for their application to patients. This study presents a method-the soft agar colony formation assay using polymerase chain reaction (PCR)-to evaluate tumorigenicity. MRC-5 cells, contaminated with HeLa cells, were cultured for up to 4 weeks in soft agar medium. Cell-proliferation-related mRNAs, Ki-67 and cyclin B, could be detected in 0.01% of HeLa cells after 5 days of culture, whereas cyclin-dependent kinase 1 (CDK1) could be detected after 2 weeks. On the other hand, CDK2, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance protein 7 (MCM7) were not useful to detect HeLa cells even after 4 weeks of culture. The cancer stem cell (CSC) markers, aldehyde dehydrogenase 1 (ALDH1) and CD133 in 0.01% of HeLa cells, could be detected 2 and 4 weeks after culture, respectively. However, another CSC marker CD44 was not useful because its expression was also detected in MRC-5 cells alone. This study suggests that the application of the PCR method to the soft agar colony formation assay could evaluate not only the tumorigenic potency in the short-term but also characterize the colonies, eventually improving the safety of CTPs.


Development of Quantitative Real-time PCR Assays for Different Clades of "Candidatus Accumulibacter".

  • An Ni Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual "Candidatus Accumulibacter" (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85-112% (R(2) = 0.962-0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.


Detection of Langat virus by TaqMan real-time one-step qRT-PCR method.

  • Siti Fatimah Muhd Radzi‎ et al.
  • Scientific reports‎
  • 2015‎

Langat virus (LGTV), one of the members of the tick-borne encephalitis virus (TBEV) complex, was firstly isolated from Ixodes granulatus ticks in Malaysia. However, the prevalence of LGTV in ticks in the region remains unknown. Surveillance for LGTV is therefore important and thus a tool for specific detection of LGTV is needed. In the present study, we developed a real-time quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for rapid detection of LGTV. Our findings showed that the developed qRT-PCR could detect LGTV at a titre as low as 0.1 FFU/ml. The detection limit of the qRT-PCR assay at 95% probability was 0.28 FFU/ml as determined by probit analysis (p ≤ 0.05). Besides, the designed primers and probe did not amplify ORF of the E genes for some closely related and more pathogenic viruses including TBEV, Louping ill virus, Omsk hemorrhagic fever virus (OHFV), Alkhurma virus (ALKV), Kyasanur Forest Disease virus (KFDV) and Powassan virus (POWV) which showed the acceptable specificity of the developed assay. The sensitivity of the developed method also has been confirmed by determining the LGTV in infected tick cell line as well as LGTV- spiked tick tissues.


Real-Time Selective Sequencing with RUBRIC: Read Until with Basecall and Reference-Informed Criteria.

  • Harrison S Edwards‎ et al.
  • Scientific reports‎
  • 2019‎

The Oxford MinION, the first commercial nanopore sequencer, is also the first to implement molecule-by-molecule real-time selective sequencing or "Read Until". As DNA transits a MinION nanopore, real-time pore current data can be accessed and analyzed to provide active feedback to that pore. Fragments of interest are sequenced by default, while DNA deemed non-informative is rejected by reversing the pore bias to eject the strand, providing a novel means of background depletion and/or target enrichment. In contrast to the previously published pattern-matching Read Until approach, our RUBRIC method is the first example of real-time selective sequencing where on-line basecalling enables alignment against conventional nucleic acid references to provide the basis for sequence/reject decisions. We evaluate RUBRIC performance across a range of optimizable parameters, apply it to mixed human/bacteria and CRISPR/Cas9-cut samples, and present a generalized model for estimating real-time selection performance as a function of sample composition and computing configuration.


Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva.

  • Ju Yeon Jung‎ et al.
  • Scientific reports‎
  • 2018‎

This study developed a new method for forensic saliva identification using three oral bacteria, Streptococcus salivarius, Streptococcus sanguinis, and Neisseria subflava, combined with a real-time polymerase chain reaction (RT-PCR) system we called OB mRT-PCR. Analytical sensitivity results showed that the target bacteria were amplified at 102-107 copies/reaction, and analytical specificity was assessed using 24 other viruses, bacteria, and protozoa. To evaluate the OB mRT-PCR kit for forensic applications, saliva from 140 Korean individuals was tested, and at least two target bacteria were detected in all the samples. Additional studies on non-saliva samples demonstrated the specificity of the kit. Comparison of the kit with two conventional saliva test methods, the SALIgAE and RSID-Saliva assays, indicated that it was more sensitive and applicable to saliva samples in long-term storage (up to 14 weeks). Additionally, through amplification of mock forensic items and old DNA samples (isolated without lysis of the bacterial cells, regardless of their Gram-positivity), we found that the kit was applicable to not only saliva swabs, but also DNA samples. We suggest that this simple RT-PCR-based experimental method is feasible for rapid on-site analysis, and we expect this kit to be useful for saliva detection in old forensic DNA samples.


Analysis and forecasting of global real time RT-PCR primers and probes for SARS-CoV-2.

  • Gowri Nayar‎ et al.
  • Scientific reports‎
  • 2021‎

Rapid tests for active SARS-CoV-2 infections rely on reverse transcription polymerase chain reaction (RT-PCR). RT-PCR uses reverse transcription of RNA into complementary DNA (cDNA) and amplification of specific DNA (primer and probe) targets using polymerase chain reaction (PCR). The technology makes rapid and specific identification of the virus possible based on sequence homology of nucleic acid sequence and is much faster than tissue culture or animal cell models. However the technique can lose sensitivity over time as the virus evolves and the target sequences diverge from the selective primer sequences. Different primer sequences have been adopted in different geographic regions. As we rely on these existing RT-PCR primers to track and manage the spread of the Coronavirus, it is imperative to understand how SARS-CoV-2 mutations, over time and geographically, diverge from existing primers used today. In this study, we analyze the performance of the SARS-CoV-2 primers in use today by measuring the number of mismatches between primer sequence and genome targets over time and spatially. We find that there is a growing number of mismatches, an increase by 2% per month, as well as a high specificity of virus based on geographic location.


Evaluation of digital real-time PCR assay as a molecular diagnostic tool for single-cell analysis.

  • Chia-Hao Chang‎ et al.
  • Scientific reports‎
  • 2018‎

In a single-cell study, isolating and identifying single cells are essential, but these processes often require a large investment of time or money. The aim of this study was to isolate and analyse single cells using a novel platform, the PanelChip™ Analysis System, which includes 2500 microwells chip and a digital real-time polymerase chain reaction (dqPCR) assay, in comparison with a standard PCR (qPCR) assay. Through the serial dilution of a known concentration standard, namely pUC19, the accuracy and sensitivity levels of two methodologies were compared. The two systems were tested on the basis of expression levels of the genetic markers vimentin, E-cadherin, N-cadherin and GAPDH in A549 lung carcinoma cells at two known concentrations. Furthermore, the influence of a known PCR inhibitor commonly found in blood samples, heparin, was evaluated in both methodologies. Finally, mathematical models were proposed and separation method of single cells was verified; moreover, gene expression levels during epithelial-mesenchymal transition in single cells under TGFβ1 treatment were measured. The drawn conclusion is that dqPCR performed using PanelChip™ is superior to the standard qPCR in terms of sensitivity, precision, and heparin tolerance. The dqPCR assay is a potential tool for clinical diagnosis and single-cell applications.


Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry.

  • Naama Massad-Ivanir‎ et al.
  • Scientific reports‎
  • 2016‎

Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >107 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.


Real-time evaluation of signal accuracy in wastewater surveillance of pathogens with high rates of mutation.

  • Ocean Thakali‎ et al.
  • Scientific reports‎
  • 2024‎

Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation.


Establishment and application of a real-time loop-mediated isothermal amplification system for the detection of CYP2C19 polymorphisms.

  • Chao Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Single-nucleotide polymorphisms (SNPs) represent the most widespread type of genetic variation (approximately 90%) in the human genome, and the demand to overcome such variation has received more attention now than ever before. The capacity to rapidly assess SNPs that correlate with disease predisposition, drug efficacy and drug toxicity is a key step for the development of personalized medicine. In this work, a rapid one-step SNP detection method, real-time loop-mediated isothermal amplification (RT-LAMP), was first applied for CYP2C19 polymorphisms testing. The optimized method was established with specifically designed primers for target amplification by real-time detection in approximately 30 min under isothermal conditions. RT-LAMP amplified few copies of template to produce significant amounts of product and quantitatively detected human DNA with compatible specificity and sensitivity. The success in the establishment of this RT-LAMP protocol for CYP2C19 polymorphism testing is significant for the extension of this technique for the detection of other SNPs, which will further facilitate the development of personalized medicine.


Real-time Metagenomic Analysis of Undiagnosed Fever Cases Unveils a Yellow Fever Outbreak in Edo State, Nigeria.

  • Fehintola V Ajogbasile‎ et al.
  • Scientific reports‎
  • 2020‎

Fifty patients with unexplained fever and poor outcomes presented at Irrua Specialist Teaching Hospital (ISTH) in Edo State, Nigeria, an area endemic for Lassa fever, between September 2018 - January 2019. After ruling out Lassa fever, plasma samples from these epidemiologically-linked cases were sent to the African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria, where we carried out metagenomic sequencing which implicated yellow fever virus (YFV) as the etiology of this outbreak. Twenty-nine of the 50 samples were confirmed positive for YFV by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), 14 of which resulted in genome assembly. Maximum likelihood phylogenetic analysis revealed that these YFV sequences formed a tightly clustered clade more closely related to sequences from Senegal than sequences from earlier Nigerian isolates, suggesting that the YFV clade responsible for this outbreak in Edo State does not descend directly from the Nigerian YFV outbreaks of the last century, but instead reflects a broader diversity and dynamics of YFV in West Africa. Here we demonstrate the power of metagenomic sequencing for identifying ongoing outbreaks and their etiologies and informing real-time public health responses, resulting in accurate and prompt disease management and control.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: