Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation.

  • Ying Zhang‎ et al.
  • PloS one‎
  • 2018‎

Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.


Fibroblasts inhibit osteogenesis by regulating nuclear-cytoplasmic shuttling of YAP in mesenchymal stem cells and secreting DKK1.

  • Fei Huang‎ et al.
  • Biological research‎
  • 2024‎

Fibrous scars frequently form at the sites of bone nonunion when attempts to repair bone fractures have failed. However, the detailed mechanism by which fibroblasts, which are the main components of fibrous scars, impede osteogenesis remains largely unknown.


Long non-coding RNA LHX1-DT regulates cardiomyocyte differentiation through H2A.Z-mediated LHX1 transcriptional activation.

  • Qi Yu‎ et al.
  • iScience‎
  • 2023‎

Long non-coding RNAs (lncRNAs) play widespread roles in various processes. However, there is still limited understanding of the precise mechanisms through which they regulate early stage cardiomyocyte differentiation. In this study, we identified a specific lncRNA called LHX1-DT, which is transcribed from a bidirectional promoter of LIM Homeobox 1 (LHX1) gene. Our findings demonstrated that LHX1-DT is nuclear-localized and transiently elevated expression along with LHX1 during early differentiation of cardiomyocytes. The phenotype was rescued by overexpression of LHX1 into the LHX1-DT-/- hESCs, indicating LHX1 is the downstream of LHX1-DT. Mechanistically, we discovered that LHX1-DT physically interacted with RNA/histone-binding protein PHF6 during mesoderm commitment and efficiently replaced conventional histone H2A with a histone variant H2A.Z at the promoter region of LHX1. In summary, our work uncovers a novel lncRNA, LHX1-DT, which plays a vital role in mediating the exchange of histone variants H2A.Z and H2A at the promoter region of LHX1.


Comprehensive analysis of coding and non-coding RNA transcriptomes related to hypoxic adaptation in Tibetan chickens.

  • Ying Zhang‎ et al.
  • Journal of animal science and biotechnology‎
  • 2021‎

Tibetan chickens, a unique native breed in the Qinghai-Tibet Plateau of China, possess a suite of adaptive features that enable them to tolerate the high-altitude hypoxic environment. Increasing evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play roles in the hypoxic adaptation of high-altitude animals, although their exact involvement remains unclear.


Suppression of hnRNP A1 binding to HK1 RNA leads to glycolytic dysfunction in Alzheimer's disease models.

  • Xin-Hao Ji‎ et al.
  • Frontiers in aging neuroscience‎
  • 2023‎

To investigate the mechanism of RNA-binding protein hnRNP A1 in mouse hippocampal neurons (HT22) on glycolysis.


Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA.

  • Ying Zhang‎ et al.
  • Cell death and differentiation‎
  • 2022‎

Ferroptosis, a novel form of regulated cell death induced by iron-dependent lipid peroxidation, plays an essential role in the development and drug resistance of tumors. Long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be involved in the regulation of cell cycle, proliferation, apoptosis, and migration of tumor cells. However, the function and molecular mechanism of NEAT1 in regulating ferroptosis in tumors remain unclear. Here, we found that ferroptosis inducers erastin and RSL3 increased NEAT1 expression by promoting the binding of p53 to the NEAT1 promoter. Induced NEAT1 promoted the expression of MIOX by competitively binding to miR-362-3p. MIOX increased ROS production and decreased the intracellular levels of NADPH and GSH, resulting in enhanced erastin- and RSL3-induced ferroptosis. Importantly, overexpression of NEAT1 increased the anti-tumor activity of erastin and RSL3 by enhancing ferroptosis both in vitro and in vivo. Collectively, these data suggest that NEAT1 plays a novel and indispensable role in ferroptosis by regulating miR-362-3p and MIOX. Considering the clinical findings that HCC patients are insensitive to chemotherapy and immunotherapy, ferroptosis induction may be a promising therapeutic strategy for HCC patients with high NEAT1 expression.


RNA-Sequencing Analysis of Gene-Expression Profiles in the Dorsal Gland of Alligator sinensis at Different Time Points of Embryonic and Neonatal Development.

  • Haitao Nie‎ et al.
  • Life (Basel, Switzerland)‎
  • 2022‎

Significant advances have been made in the morphological observations of the dorsal gland (DG), an oval organ/tissue which lies on both sides of the dorsal midline of the crocodilian. In the current study, RNA sequencing (RNA-seq) was used to identify the changing patterns of Alligator sinesis DGs at different timepoints from the 31st embryonic day (E31) to the newly hatched 1st day (NH1). A comprehensive transcriptional changes of differentially expression gene (DEGs) involved in the melanogenesis, cholesterol metabolism, and cell apoptosis pathways suggested that the DG might serves as a functional secretory gland in formation, transport and deposition of pigment, and lipids secretion via lysosomal exocytosis. Furthermore, the remarkable immunohistochemical staining of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma 2 (Bcl-2)-positive signals in the basilar cells, in parallel with the immuno-reactive TdT-mediated dUTP nick-End labeling(TUNEL) within suprabasal cells, provided direct molecular evidence supporting for the speculation that DG serves as a holocrine secretion mode. Finally, subsequent phylogenetic and immunohistochemical analysis for the PITX2, the identified DEGs in the RNA-seq, was helpful to further elucidate the transcriptional regulatory mechanism of candidate genes. In conclusion, the current results are of considerable importance in enriching our understanding of the intrinsic relationship between the skin derivatives and lifestyles of newborn Alligator sinesis.


The combination of calreticulin-targeting L-ASNase and anti-PD-L1 antibody modulates the tumor immune microenvironment to synergistically enhance the antitumor efficacy of radiotherapy.

  • Ying Zhang‎ et al.
  • Theranostics‎
  • 2024‎

Radiotherapy (RT) triggers immunogenic cell death (ICD). L-ASNase, which catalyzes the conversion of asparagine (Asn), thereby depleting it, is used in the treatment of blood cancers. In previous work, we showed that CRT3LP and CRT4LP, PASylated L-ASNases conjugated to the calreticulin (CRT)-specific monobodies CRT3 and CRT4, increase the efficacy of ICD-inducing chemotherapy. Here, we assessed their efficacy in tumor-bearing mice treated with RT. Methods: Monobody binding was evaluated by in silico molecular docking analysis. The expression and cellular localization of ecto-CRT were assessed by confocal imaging and flow cytometry. The antitumor effect and the roles of CRT3LP and CRT4LP in irradiation (IR)-induced ICD in tumors were analyzed by ELISA, immunohistochemistry, and immune analysis methods. Results: Molecular docking analysis showed that CRT3 and CRT4 monobodies were stably bound to CRT. Exposure to 10 Gy IR decreased the viability of CT-26 and MC-38 tumor cells in a time-dependent manner until 72 h, and increased the expression of the ICD marker ecto-CRT (CRT exposed on the cell surface) and the immune checkpoint marker PD-L1 until 48 h. IR enhanced the cytotoxicity of CRT3LP and CRT4LP in CT-26 and MC-38 tumor cells, and increased reactive oxygen species (ROS) levels. In mice bearing CT-26 and MC-38 subcutaneous tumors treated with 6 Gy IR, Rluc8-conjugated CRT-specific monobodies (CRT3-Rluc8 and CRT4-Rluc8) specifically targeted tumor tissues, and CRT3LP and CRT4LP increased total ROS levels in tumor tissues, thereby enhancing the antitumor efficacy of RT. Tumor tissues from these mice showed increased mature dendritic, CD4+ T, and CD8+ T cells and pro-inflammatory cytokines (IFNγ and TNFα) and decreased regulatory T cells, and the expression of tumor cell proliferation markers (Ki67 and CD31) was downregulated. These data indicate that the combination of IR and CRT-targeting L-ASNases activated and reprogramed the immune system of the tumor microenvironment. Consistent with these data, an immune checkpoint inhibitor (anti-PD-L1 antibody) markedly increased the therapeutic efficacy of combined IR and CRT-targeting L-ASNases. Conclusion: CRT-specific L-ASNases are useful as additive drug candidates in tumors treated with RT, and combination treatment with anti-PD-L1 antibody increases their therapeutic efficacy.


Different microRNA alterations contribute to diverse outcomes following EV71 and CA16 infections: Insights from high-throughput sequencing in rhesus monkey peripheral blood mononuclear cells.

  • Yajie Hu‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2016‎

Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) are the predominant pathogens of hand, foot, and mouth disease (HFMD). Although these viruses exhibit genetic homology, the clinical manifestations caused by the two viruses have some discrepancies. In addition, the underlying mechanisms leading to these differences remain unclear. microRNAs (miRNAs) participate in numerous biological or pathological processes, including host responses to viral infections. Here, we focused on differences in miRNA expression patterns in rhesus monkey peripheral blood mononuclear cells (PBMCs) infected with EV71 and CA16 at various time points using high-throughput sequencing. The results demonstrated that 106 known and 13 novel miRNAs exhibited significant differences, and 32 key miRNAs among them for target prediction presented opposite trends in the EV71- and CA16-infected samples. GO and pathway analysis of the predicted targets showed enrichment in 14 biological processes, 10 molecular functions, 8 cellular components and 104 pathways. Subsequently, regulatory networks of miRNA-transcription factors, miRNA-predicted targets, miRNA-GOs and miRNA-pathways were constructed to reveal the complex regulatory mechanisms of miRNAs during the infection phase. Ultimately, we analysed hierarchical GO categories of the predicted targets involved in immune system processes, which indicated that the innate and adaptive immunity following EV71 and CA16 infections may be remarkably distinct. In conclusion, this report is the first describing miRNA expression profiles in PBMCs with EV71 and CA16 infections using high-throughput sequencing. Our findings could provide a valuable basis for further studies on the regulatory roles of miRNAs related to the different immune responses caused by EV71 and CA16 infections.


FGFR2 accommodates osteogenic cell fate determination in human mesenchymal stem cells.

  • Ying Zhang‎ et al.
  • Gene‎
  • 2022‎

The multilineage differentiation potential of human mesenchymal stem cells (hMSCs) underpins their clinical utility for tissue regeneration. Control of such cell-fate decisions is tightly regulated by different growth factors/cytokines and their cognate receptors. Fibroblast growth factors (FGFs) are among such factors critical for osteogenesis. However, how FGF receptors (FGFRs) help to orchestrate osteogenic progression remains to be fully elucidated. Here, we studied the protein levels of FGFRs during osteogenesis in human adult bone marrow-derived MSCs and discovered a positive correlation between FGFR2 expression and alkaline phosphatase (ALP) activity, an early marker of osteogenesis. Through RNA interference studies, we confirmed the role of FGFR2 in promoting the osteogenic differentiation of hMSCs. Knockdown of FGFR2 resulted in downregulation of pro-osteogenic genes and upregulation of pro-adipogenic genes and adipogenic commitment. Moreover, under osteogenic induction, FGFR2 knockdown resulted in upregulation of Enhancer of Zeste Homolog 2 (EZH2), an epigenetic enzyme that regulates MSC lineage commitment and suppresses osteogenesis. Lastly, we show that serial-passaged hMSCs have reduced FGFR2 expression and impaired osteogenic potential. Our study suggests that FGFR2 is critical for mediating osteogenic fate by regulating the balance of osteo-adipogenic lineage commitment. Therefore, examining FGFR2 levels during serial-passaging of hMSCs may prove useful for monitoring their multipotency.


Pharmacological Perturbation of Mechanical Contractility Enables Robust Transdifferentiation of Human Fibroblasts into Neurons.

  • Zheng-Quan He‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

Direct cell reprogramming, also called transdifferentiation, is valuable for cell fate studies and regenerative medicine. Current approaches to transdifferentiation are usually achieved by directly targeting the nuclear functions, such as manipulating the lineage-specific transcriptional factors, microRNAs, and epigenetic modifications. Here, a robust method to convert fibroblasts to neurons through targeting the cytoskeleton followed by exposure to lineage-specification surroundings is reported. Treatment of human foreskin fibroblasts with a single molecule inhibitor of the actomyosin contraction, can disrupt the cytoskeleton, promote cell softening and nuclear export of YAP/TAZ, and induce a neuron-like state. These neuron-like cells can be further converted into mature neurons, while single-cell RNA-seq shows the homogeneity of these cells during the induction process. Finally, transcriptomic analysis shows that cytoskeletal disruption collapses the original lineage expression profile and evokes an intermediate state. These findings shed a light on the underestimated role of the cytoskeleton in maintaining cell identity and provide a paradigm for lineage conversion through the regulation of mechanical properties.


Chromosomal-level assembly of the Leptodermis oblonga (Rubiaceae) genome and its phylogenetic implications.

  • Xiao-Ming Guo‎ et al.
  • Genomics‎
  • 2021‎

Rubiaceae is the fourth largest and a taxonomically complex family of angiosperms. Many species in this family harbor low reproductive isolation and frequently exhibit inconsistent phenotypic characteristics. Therefore, taxonomic classification and their phylogenetic relationships in the Rubiaceae family is challenging, especially in the genus Leptodermis. Considering the low taxonomic confusion and wide distribution, Leptodermis oblonga is selected as a representative Leptodermis for genome sequencing. The assemblies resulted in 497 Mbp nuclear and 155,100 bp chloroplast genomes, respectively. Using the nuclear genome as a reference, SNPs were called from 37 Leptodermis species or varieties. The phylogenetic tree based on SNPs exhibited high resolution for species delimitation of the complex and well-resolved phylogenetic relationships in the genus. Moreover, 28,987 genes were predicted in the nuclear genome and used for comparative genomics study. As the first chromosomal-level genome of the subfamily Rubioideae in Rubiaceae, it will provide fruitfully evolutionary understanding in the family.


H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas.

  • Manav Pathania‎ et al.
  • Cancer cell‎
  • 2017‎

Gain-of-function mutations in histone 3 (H3) variants are found in a substantial proportion of pediatric high-grade gliomas (pHGG), often in association with TP53 loss and platelet-derived growth factor receptor alpha (PDGFRA) amplification. Here, we describe a somatic mouse model wherein H3.3K27M and Trp53 loss alone are sufficient for neoplastic transformation if introduced in utero. H3.3K27M-driven lesions are clonal, H3K27me3 depleted, Olig2 positive, highly proliferative, and diffusely spreading, thus recapitulating hallmark molecular and histopathological features of pHGG. Addition of wild-type PDGFRA decreases latency and increases tumor invasion, while ATRX knockdown is associated with more circumscribed tumors. H3.3K27M-tumor cells serially engraft in recipient mice, and preliminary drug screening reveals mutation-specific vulnerabilities. Overall, we provide a faithful H3.3K27M-pHGG model which enables insights into oncohistone pathogenesis and investigation of future therapies.


Novel cytoplasmic lncRNA IKBKBAS promotes lung adenocarcinoma metastasis by upregulating IKKβ and consequential activation of NF-κB signaling pathway.

  • Yuanxin Xing‎ et al.
  • Cell death & disease‎
  • 2021‎

NF-κB signaling pathway is a critical link between inflammation and cancer. Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in dysregulation of NF-κB. Herein, we reported a novel lncRNA IKBKBAS that activated NF-κB in lung adenocarcinoma (LUAD) by upregulating IKKβ, a key member of NF-κB signaling pathway, thereby promoting the metastasis of LUAD both in vitro and in vivo. The upregulated IKBKBAS functioned as a competing endogenous RNA (ceRNA) via competing with IKKβ mRNA for binding miR-4741, consequently leading to upregulation and activation of IKKβ, and ultimately activation of NF-κB. The abnormally elevated IKBKBAS in LUAD was mainly resulted from the extremely decrease of miR-512-5p that targeting IKBKBAS. Furthermore, we identified a positive feedback loop between NF-κB and IKBKBAS, in which NF-κB activation induced by overexpression of IKBKBAS could promote the transcription of IKBKBAS by binding the κB sites within IKBKBAS promoter. Our studies revealed that IKBKBAS was involved in the activation of NF-κB signaling by upregulating the expression of IKKβ, which made it serve as a potential novel target for therapies to LUAD.


The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner.

  • Ying Zhang‎ et al.
  • Phytomedicine : international journal of phytotherapy and phytopharmacology‎
  • 2021‎

The isothiocyanate sulforaphane (SFN) has multiple protein targets in mammalian cells, affecting processes of fundamental importance for the maintenance of cellular homeostasis, among which are those regulated by the stress response transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the serine/threonine protein kinase mechanistic target of rapamycin (mTOR). Whereas the way by which SFN activates NRF2 is well established, the molecular mechanism(s) of how SFN inhibits mTOR is not understood.


Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle.

  • Weixiu Ji‎ et al.
  • PloS one‎
  • 2018‎

Hypoxia training enhances the endurance capacity of athletes. This response may in part be attributed to the hypoxia-induced increase in antioxidant capacity in skeletal muscles. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor which regulates the expression of genes via binding to the antioxidant-response element (ARE) of these genes, plays a crucial role in stimulating the body's defense system and potentially responds to hypoxia. Meanwhile, hypoxia-inducible factor-1α (HIF-1α) is an important player in protecting cells from hypoxic stress. The purpose of this study was to investigate the effects of acute hypoxia exposure with different durations on the activation of Nrf2-ARE pathway and a possible regulatory role of HIF-1α in these responses.


Compensatory Genetic and Transcriptional Cytonuclear Coordination in Allopolyploid Lager Yeast (Saccharomyces pastorianus).

  • Keren Zhang‎ et al.
  • Molecular biology and evolution‎
  • 2022‎

Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation.


Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression.

  • Jamie O Dyer‎ et al.
  • Journal of molecular biology‎
  • 2017‎

Mutations that affect myelodysplasia/myeloid leukemia factor (MLF) proteins are associated with leukemia and several other cancers. However, with no strong homology to other proteins of known function, the role of MLF proteins in the cell has remained elusive. Here, we describe a proteomics approach that identifies MLF as a member of a nuclear chaperone complex containing a DnaJ protein, BCL2-associated anthanogene 2, and Hsc70. This complex associates with chromatin and regulates the expression of target genes. The MLF complex is bound to sites of nucleosome depletion and sites containing active chromatin marks (e.g., H3K4me3 and H3K4me1). Hence, MLF binding is enriched at promoters and enhancers. Additionally, the MLF-chaperone complex functions to regulate transcription factor stability, including the RUNX transcription factor involved in hematopoiesis. Although Hsc70 and other co-chaperones have been shown to play a role in nuclear translocation of a variety of proteins including transcription factors, our findings suggest that MLF and the associated co-chaperones play a direct role in modulating gene transcription.


β-Catenin and Associated Proteins Regulate Lineage Differentiation in Ground State Mouse Embryonic Stem Cells.

  • Fang Tao‎ et al.
  • Stem cell reports‎
  • 2020‎

Mouse embryonic stem cells (ESCs) cultured in defined medium resemble the pre-implantation epiblast in the ground state, with full developmental capacity including the germline. β-Catenin is required to maintain ground state pluripotency in mouse ESCs, but its exact role is controversial. Here, we reveal a Tcf3-independent role of β-catenin in restraining germline and somatic lineage differentiation genes. We show that β-catenin binds target genes with E2F6 and forms a complex with E2F6 and HMGA2 or E2F6 and HP1γ. Our data indicate that these complexes help β-catenin restrain and fine-tune germ cell and neural developmental potential. Overall, our data reveal a previously unappreciated role of β-catenin in preserving lineage differentiation integrity in ground state ESCs.


Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing.

  • Divya Reddy‎ et al.
  • EMBO reports‎
  • 2023‎

Paraspeckles are subnuclear RNA-protein structures that are implicated in important processes including cellular stress response, differentiation, and cancer progression. However, it is unclear how paraspeckles impart their physiological effect at the molecular level. Through biochemical analyses, we show that paraspeckles interact with the SWI/SNF chromatin-remodeling complex. This is specifically mediated by the direct interaction of the long-non-coding RNA NEAT1 of the paraspeckles with ARID1B of the cBAF-type SWI/SNF complex. Strikingly, ARID1B depletion, in addition to resulting in loss of interaction with the SWI/SNF complex, decreases the binding of paraspeckle proteins to chromatin modifiers, transcription factors, and histones. Functionally, the loss of ARID1B and NEAT1 influences the transcription and the alternative splicing of a common set of genes. Our findings reveal that dynamic granules such as the paraspeckles may leverage the specificity of epigenetic modifiers to impart their regulatory effect, thus providing a molecular basis for their function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: