Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 contribute to neuronal cell loss in an animal model of multiple sclerosis.

  • Cole D Libner‎ et al.
  • The Journal of comparative neurology‎
  • 2020‎

Neurodegeneration, including loss of neurons and axons, is a feature of progressive forms of multiple sclerosis (MS). The mechanisms underlying neurodegeneration are mostly unknown. Research implicates autoimmunity to nonmyelin self-antigens as important contributors to disease pathogenesis. Data from our lab implicate autoimmunity to the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a possible mechanism of neurodegeneration in MS. MS patients make antibodies to hnRNP A1, which have been shown to lead to neuronal dysfunction in vitro. Using an animal model of MS, experimental autoimmune encephalomyelitis (EAE), we show here that injection of anti-hnRNP A1 antibodies, in contrast to control antibodies, resulted in worsened disease and increased neurodegeneration. We found a reduction of NeuN+ neuronal cell bodies in areas of the ventral gray matter of the spinal cord where anti-hnRNP A1 antibodies localized. Neurons displayed increased levels of hnRNP A1 nucleocytoplasmic mislocalization and stress granule formation, both markers of neuronal injury. Anti-hnRNP A1 antibodies were found to surround neuronal cell bodies and interact with CD68+ immune cells via Fc receptors. Additionally, anti-hnRNP A1 antibodies were found within neuronal cell bodies including those of the ventral spinocerebellar tract (VSCT), a tract previously shown to undergo neurodegeneration in anti-hnRNP A1 antibody injected EAE mice. Finally, both immune cells and neurons showed increased levels of inducible nitric oxide synthase, another indicator of cell damage. These findings suggest that autoimmunity to RBPs, such as hnRNP A1, play a role in neurodegeneration in EAE with important implications for the pathogenesis of MS.


Antibodies to the RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein A1 Colocalize to Stress Granules Resulting in Altered RNA and Protein Levels in a Model of Neurodegeneration in Multiple Sclerosis.

  • Joshua N Douglas‎ et al.
  • Journal of clinical & cellular immunology‎
  • 2016‎

Multiple sclerosis (MS) is the most common demyelinating disorder of the central nervous system (CNS). Data suggest that antibodies to CNS targets contribute to the pathogenesis of MS. MS patients produce autoantibodies to heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). hnRNP A1 is an RNA binding protein (RBP) overexpressed in neurons that functions in pre-mRNA splicing, mRNA trafficking, and translation. Previously, we showed that anti-hnRNP A1 antibodies entered neuronal cells (in vitro) via clathrin-mediated endocytosis, caused mislocalization of endogenous hnRNP A1 protein and increased markers of neurodegeneration including decreased ATP concentration and apoptosis. In this study, we hypothesized that anti-hnRNP A1 antibodies might cause stress granule formation and altered levels of RNAs and proteins that bind hnRNP A1.


Knock-Down of Heterogeneous Nuclear Ribonucleoprotein A1 Results in Neurite Damage, Altered Stress Granule Biology, and Cellular Toxicity in Differentiated Neuronal Cells.

  • Amber Anees‎ et al.
  • eNeuro‎
  • 2021‎

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA binding protein (RBP) that is localized within neurons and plays crucial roles in RNA metabolism. Its importance in neuronal functioning is underscored from the study of its pathogenic features in many neurodegenerative diseases where neuronal hnRNP A1 is mislocalized from the nucleus to the cytoplasm resulting in loss of hnRNP A1 function. Here, we model hnRNP A1 loss-of-function by siRNA-mediated knock-down in differentiated Neuro-2a cells. Through RNA sequencing (RNA-seq) followed by gene ontology (GO) analyses, we show that hnRNP A1 is involved in important biological processes, including RNA metabolism, neuronal function, neuronal morphology, neuronal viability, and stress granule (SG) formation. We further confirmed several of these roles by showing that hnRNP A1 knock-down results in a reduction of neurite outgrowth, increase in cell cytotoxicity and changes in SG formation. In summary, these findings indicate that hnRNP A1 loss-of-function contributes to neuronal dysfunction and cell death and implicates hnRNP A1 dysfunction in the pathogenesis of neurodegenerative diseases.


hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS).

  • Hannah E Salapa‎ et al.
  • Nature communications‎
  • 2024‎

Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis. We confirmed this in vivo in experimental autoimmune encephalomyelitis employing CLIPseq specific for hnRNP A1, where hnRNP A1 differentially binds and regulates RNA, including aberrantly spliced targets identified in human samples. Additionally, dysfunctional hnRNP A1 expression in neurons caused neurite loss and identical changes in splicing, corroborating hnRNP A1 dysfunction as a cause of neurodegeneration. Collectively, these data indicate hnRNP A1 dysfunction causes altered neuronal RNA splicing, resulting in neurodegeneration in MS.


Dysfunctional RNA-binding protein biology and neurodegeneration in experimental autoimmune encephalomyelitis in female mice.

  • Hannah E Salapa‎ et al.
  • Journal of neuroscience research‎
  • 2020‎

Altered stress granule (SG) and RNA-binding protein (RBP) biology have been shown to contribute to the pathogenesis of several neurodegenerative diseases, yet little is known about their role in multiple sclerosis (MS). Pathological features associated with dysfunctional RBPs include RBP mislocalization from its normal nuclear location to the cytoplasm and the formation of chronic SGs. We tested the hypothesis that altered SG and RBP biology might contribute to the neurodegeneration in experimental autoimmune encephalomyelitis (EAE). C57BL/6 female mice were actively immunized with MOG35-55 to induce EAE. Spinal cords were examined for mislocalization of the RBPs, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and TAR-DNA binding protein-43 (TDP-43), SGs, neurodegeneration (SMI-32), T cells (CD3), and macrophages (CD68). In contrast to naive mice, mice with EAE showed SG formation (p < 0.0001) and mislocalization of hnRNP A1 (p < 0.05) in neurons of the ventral spinal cord gray matter, which correlated with clinical score (R = 0.8104, p = 0.0253). In these same areas, there was a neuronal loss (p < 0.0001) and increased SMI-32 immunoreactivity (both markers of neurodegeneration) and increased staining for CD3+ T cells and IFN-gamma. These findings recapitulate the SG and RBP biology and markers of neurodegeneration in MS tissues and suggest that altered SG and RBP biology contribute to the neurodegeneration in EAE, which might also apply to the pathogenesis of MS.


Antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in a model of central nervous system autoimmune inflammatory disease.

  • Joshua N Douglas‎ et al.
  • Journal of neuroinflammation‎
  • 2016‎

Neurodegeneration is believed to be the primary cause of permanent, long-term disability in patients with multiple sclerosis. The cause of neurodegeneration in multiple sclerosis appears to be multifactorial. One mechanism that has been implicated in the pathogenesis of neurodegeneration in multiple sclerosis is the targeting of neuronal and axonal antigens by autoantibodies. Multiple sclerosis patients develop antibodies to the RNA-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), which is enriched in neurons. We hypothesized that anti-hnRNP A1 antibodies would contribute to neurodegeneration in an animal model of multiple sclerosis.


Pro-Inflammatory Cytokines and Antibodies Induce hnRNP A1 Dysfunction in Mouse Primary Cortical Neurons.

  • Muxue Li‎ et al.
  • Brain sciences‎
  • 2021‎

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system with a significant neurodegenerative component. Dysfunctional RNA-binding proteins (RBPs) are causally linked to neuronal damage and are a feature of MS, including the mislocalization of the RBP heterogeneous nuclear ribonucleoprotein A1 (A1). Here, we show that primary neurons exposed to pro-inflammatory cytokines and anti-A1 antibodies, both characteristic of an MS autoimmune response, displayed increased A1 mislocalization, stress granule formation, and decreased neurite length, a marker of neurodegeneration. These findings illustrate a significant relationship between secreted immune factors, A1 dysfunction, and neuronal damage in a disease-relevant model system.


Localization of near-infrared labeled antibodies to the central nervous system in experimental autoimmune encephalomyelitis.

  • Sangmin Lee‎ et al.
  • PloS one‎
  • 2019‎

Antibodies, including antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1, have been shown to contribute to the pathogenesis of multiple sclerosis, thus it is important to assess their biological activity using animal models of disease. Near-infrared optical imaging of fluorescently labeled antibodies and matrix metalloproteinase activity were measured and quantified in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis. We successfully labeled, imaged and quantified the fluorescence signal of antibodies that localized to the central nervous system of mice with experimental autoimmune encephalomyelitis. Fluorescently labeled anti-heterogeneous nuclear ribonucleoprotein A1 antibodies persisted in the central nervous system of mice with experimental autoimmune encephalomyelitis, colocalized with matrix metalloproteinase activity, correlated with clinical disease and shifted rostrally within the spinal cord, consistent with experimental autoimmune encephalomyelitis being an ascending paralysis. The fluorescent antibody signal also colocalized with matrix metalloproteinase activity in brain. Previous imaging studies in experimental autoimmune encephalomyelitis analyzed inflammatory markers such as cellular immune responses, dendritic cell activity, blood brain barrier integrity and myelination, but none assessed fluorescently labeled antibodies within the central nervous system. This data suggests a strong association between autoantibody localization and disease. This system can be used to detect other antibodies that might contribute to the pathogenesis of autoimmune diseases of the central nervous system including multiple sclerosis.


hnRNP A1 dysfunction in oligodendrocytes contributes to the pathogenesis of multiple sclerosis.

  • Ali Jahanbazi Jahan-Abad‎ et al.
  • Glia‎
  • 2023‎

Oligodendrocyte (OL) damage and death are prominent features of multiple sclerosis (MS) pathology, yet mechanisms contributing to OL loss are incompletely understood. Dysfunctional RNA binding proteins (RBPs), hallmarked by nucleocytoplasmic mislocalization and altered expression, have been shown to result in cell loss in neurologic diseases, including in MS. Since we previously observed that the RBP heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was dysfunctional in neurons in MS, we hypothesized that it might also contribute to OL pathology in MS and relevant models. We discovered that hnRNP A1 dysfunction is characteristic of OLs in MS brains. These findings were recapitulated in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, where hnRNP A1 dysfunction was characteristic of OLs, including oligodendrocyte precursor cells and mature OLs in which hnRNP A1 dysfunction correlated with demyelination. We also found that hnRNP A1 dysfunction was induced by IFNγ, indicating that inflammation influences hnRNP A1 function. To fully understand the effects of hnRNP A1 dysfunction on OLs, we performed siRNA knockdown of hnRNP A1, followed by RNA sequencing. RNA sequencing detected over 4000 differentially expressed transcripts revealing alterations to RNA metabolism, cell morphology, and programmed cell death pathways. We confirmed that hnRNP A1 knockdown was detrimental to OLs and induced apoptosis and necroptosis. Together, these data demonstrate a critical role for hnRNP A1 in proper OL functioning and survival and suggest a potential mechanism of OL damage and death in MS that involves hnRNP A1 dysfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: