Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

IL-17 intensifies IFN-γ-induced NOS2 upregulation in RAW 264.7 cells by further activating STAT1 and NF-κB.

  • Qiyue Gao‎ et al.
  • International journal of molecular medicine‎
  • 2016‎

Interleukin-17 (IL-17) is a signature cytokine of Th17 cells. Previous research has indicated that IL-17 plays a proinflammatory role by exacerbating interferon-γ (IFN-γ)-induced inflammation. However, prior to this study, it was not known whether inducible nitric oxide synthase (iNOS or NOS2), a signature molecule of inflammation, could be intensified by IL-17 when combined with IFN-γ. Thus, we explored the roles and underlying mechanisms of IL-17 and IFN-γ in the regulation of NOS2 expression in RAW 264.7 cells using qPCR, western blot analysis, colorimetric analysis, ChIP assay and statistical analysis. Although IL-17 alone did not induce NOS2 expression or nitric oxide (NO) production, as shown by western blot analysis and colorimetric analysis, it intensified IFN-γ-induced NOS2 upregulation and NO production in RAW 264.7 cells. The alteration of relevant transcription factors demonstrated that a combination of IFN-γ and IL-17 enhanced Tyr701-phosphorylated signal transducer and activator of transcription 1 [p-STAT1(Y701)] and nuclear factor-κB (NF-κB) activation, nuclear translocations and their binding to the NOS2 promoter, compared with IFN-γ alone, as illustrated by the results of the western blot analysis and ChIP assay. Also, using the corresponding inhibitors of STAT1 and NF-κB, we noted downregulation of the expression of NOS2 induced by IFN-γ alone or in combination with IL-17, respectively. In addition, IFN-γ increased phosphorylated (p-)p38 mitogen-activated protein kinase (MAPK), and accelerated the activation of the NF-κB pathway and the expression of NOS2, but phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) was reduced by treatment with IFN-γ and IL-17. IL-17 intensified the activation of the NF-κB pathway and NOS2 upregulation induced by IFN-γ by increasing the phosphorylation of p38 MAPK and limiting the phosphorylation of ERK1/2. Taken together, these results suggest that IL-17 intensified IFN-γ-induced NOS2 upregulation and NO production by increasing the transcription activity of p-STAT1(Y701) and NF-κB in RAW 264.7 cells. Further activation of the NF-κB pathway induced by IL-17 relied on enhanced phosphorylation of p38 MAPK and decreased phosphorylation of ERK1/2. The mechanism suggested in this study provides novel information which may be used for anti-inflammatory therapy with IL-17.


HigB of Pseudomonas aeruginosa Enhances Killing of Phagocytes by Up-Regulating the Type III Secretion System in Ciprofloxacin Induced Persister Cells.

  • Mei Li‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2016‎

Bacterial persister cells are dormant and highly tolerant to lethal antibiotics, which are believed to be the major cause of recurring and chronic infections. Activation of toxins of bacterial toxin-antitoxin systems inhibits bacterial growth and plays an important role in persister formation. However, little is known about the overall gene expression profile upon toxin activation. More importantly, how the dormant bacterial persisters evade host immune clearance remains poorly understood. Here we demonstrate that a Pseudomonas aeruginosa toxin-antitoxin system HigB-HigA is required for the ciprofloxacin induced persister formation. Transcriptome analysis of a higA::Tn mutant revealed up regulation of type III secretion systems (T3SS) genes. Overexpression of HigB increased the expression of T3SS genes as well as bacterial cytotoxicity. We further demonstrate that wild type bacteria that survived ciprofloxacin treatment contain higher levels of T3SS proteins and display increased cytotoxicity to macrophage compared to vegetative bacterial cells. These results suggest that P. aeruginosa accumulates T3SS proteins during persister formation, which can protect the persister cells from host clearance by efficiently killing host immune cells.


Extracellular Vesicles From Adipose Tissue-Derived Stem Cells Affect Notch-miR148a-3p Axis to Regulate Polarization of Macrophages and Alleviate Sepsis in Mice.

  • Xiaozhi Bai‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Extracellular vesicles (EVs) from adipose tissue-derived stem cells have been reported to attenuate lipopolysaccharide (LPS) induced inflammation and sepsis while the specific mechanism is unclear. This study explored the underlying molecular mechanisms of EVs from adipose tissue-derived stem cells in reducing inflammation. LPS- induced macrophage models and mice model were established to mimic inflammation in vitro and in vivo. EVs were extracted from adipose tissue-derived stem cells and identified. It was found that proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, substantially decreased after EVs were applied to LPS-stimulated macrophages and mice, and thus, LPS induced M1 polarization was inhibited and sepsis was strongly alleviated. In the LPS induced macrophages, the expression of Notch signaling molecules and the activation of the NF-κB pathway were substantially decreased after the administration of EVs. Then, RBP-J-/- mice and macrophages were used. It was found that the miR-148a-3p level was significantly lower in the RBP-J-/- macrophages than in the wildtype macrophages. In the LPS induced macrophages, the increasing of miR-148a-3p was milder in the RBP-J-/- macrophages than in the wild type macrophages. Then, miR-148a-3p was overexpressed in macrophages and mice, and we found that the expression of proinflammatory cytokines was increased both in vivo and in vitro. The protective effect of EVs in LPS induced sepsis was diminished by the overexpression of miR-148a-3p. In conclusion, we proved that EVs could attenuate inflammation and further protect organ function by regulating the Notch-miR148a-3p signaling axis and then decreasing macrophage polarization to M1.


A Novel lncRNA Mediates the Delayed Tooth Eruption of Cleidocranial Dysplasia.

  • Yuejiao Xin‎ et al.
  • Cells‎
  • 2022‎

Delayed eruption of permanent teeth is a common symptom of cleidocranial dysplasia (CCD). Previous studies have focused on the anomaly of osteogenesis resulting from mutations in the Runt-related transcription factor-2 gene (RUNX2). However, deficiencies in osteoclastogenesis and bone resorption, and the epigenetic regulation mediated by long non-coding (lnc)RNAs in CCD remain to be elucidated. Here, a novel osteoclast-specific lncRNA (OC-lncRNA) was identified during the osteoclast differentiation of RAW 264.7 cells transfected with a RUNX2 mutation expression cassette. We further confirmed that OC-lncRNA positively regulated osteoclastogenesis and bone resorption. The OC-lncRNA promoted the expression of CXC chemokine receptor type 3 (CXCR3) by competitively binding to microRNA (miR)-221-5p. The CXCR3-CXC-motif chemokine ligand 10 (CXCL10) interaction and nuclear factor-κB constituted a positive feedback that positively regulated osteoclastogenesis and bone resorption. These results demonstrate that OC-lncRNA-mediated osteoclast dysfunction via the OC-lncRNA-miR-221-5p-CXCR3 axis, which is involved in the process of delayed tooth eruption of CCD.


Pseudomonas aeruginosa modulates alginate biosynthesis and type VI secretion system in two critically ill COVID-19 patients.

  • Jiuxin Qu‎ et al.
  • Cell & bioscience‎
  • 2022‎

COVID-19 pneumonia has caused huge impact on the health of infected patients and associated with high morbidity and mortality. Shift in the lung microbial ecology upon such viral infection often worsens the disease and increases host susceptibility to superinfections. Bacterial superinfection contributes to the aggravation of COVID-19 and poses a great challenge to clinical treatments. An in-depth investigation on superinfecting bacteria in COVID-19 patients might facilitate understanding of lung microenvironment post virus infections and superinfection mechanism.


Immunostimulatory Effects of Polysaccharides from Spirulina platensis In Vivo and Vitro and Their Activation Mechanism on RAW246.7 Macrophages.

  • Xueyan Wu‎ et al.
  • Marine drugs‎
  • 2020‎

In this study, Spirulina platensis (S.p.) polysaccharide (PSP) was obtained by ultrasonic-microwave-assisted extraction (UMAE) and purified by an aqueous two-phase system (ATPS). Two different methods were applied to purified Spirulina platensis (S.p.) polysaccharide (PSP), respectively, due to PSP as a complex multi-component system. Three polysaccharide fractions (PSP-1, PSP-2, and PSP-3) with different acidic groups were obtained after PSP was fractionated by the diethyl aminoethyl (DEAE)-52 cellulose chromatography, and two polysaccharide fractions (PSP-L and PSP-H) with different molecular weight were obtained by ultrafiltration centrifugation. The chemoprotective effects of PSP in cyclophosphamide (Cy) treated mice were investigated. The results showed that PSP could significantly increase spleen and thymus index, peripheral white blood cells (PWBC), and peripheral blood lymphocytes (PBL). The in vivo immunostimulatory assays demonstrated that PSP could in dose-dependent increase of TNF-α, IL-10, and IFN-γ production in sera. The in vitro immunostimulatory assays showed that PSP and its fractions (PSPs) could evidently enhance the proliferation of splenocytes and RAW 264.7 cells and increase the productions of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). PSPs could also enhance phagocytic activity of RAW 264.7 cells. The acidic polysaccharide fractions of PSP-2, PSP-3, and PSP-L with small molecular weight had the higher immunostimulatory activity. Signaling pathway research results indicated that PSP-L activated RAW264.7 cells through MAPKs, NF-κB signaling pathways via TLR4 receptor.


Azukisapogenol Triterpene Glycosides from Oxytropis chiliophylla Royle.

  • Jun Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Eight azukisapogenol triterpene glycosides, including five new compounds, oxychiliotriterpenosides A⁻E (1⁻5), two new methyl glucuronide derivatives that proved to be artifacts, oxychiliotriterpenoside E-glucuronic acid methyl ester (6) and myrioside B-glucuronic acid methyl ester (7), and a known one, myrioside B (8), was isolated from the aerial part of Oxytropis chiliophylla Royle. Their structures were elucidated based on extensive spectroscopic analyses and chemical methods. Triterpene glycosides were first obtained from O. chiliophylla, and those containing a galactose unit (1, 2, 5 and 6) and diglucosidic or triglucosidic linkage at C-29 (1⁻4), were reported from Oxytropis species for the first time, which might be recognized as a chemotaxonomic feature of O. chiliophylla. All isolated compounds were evaluated for their anti-inflammatory activities against NO production using lipopolysaccharide (LPS)-induced RAW 264.7 cells, but no compounds showed potent inhibition on NO production.


Characterization and evaluation of a femtosecond laser-induced osseointegration and an anti-inflammatory structure generated on a titanium alloy.

  • Yang Liu‎ et al.
  • Regenerative biomaterials‎
  • 2021‎

Cell-material interactions during early osseointegration of the bone-implant interface are critical and involve crosstalk between osteoblasts and osteoclasts. The surface properties of titanium implants also play a critical role in cell-material interactions. In this study, femtosecond laser treatment and sandblasting were used to alter the surface morphology, roughness and wettability of a titanium alloy. Osteoblasts and osteoclasts were then cultured on the resulting titanium alloy disks. Four disk groups were tested: a polished titanium alloy (pTi) control; a hydrophilic micro-dislocation titanium alloy (sandblasted Ti (STi)); a hydrophobic nano-mastoid Ti alloy (femtosecond laser-treated Ti (FTi)); and a hydrophilic hierarchical hybrid micro-/nanostructured Ti alloy [femtosecond laser-treated and sandblasted Ti (FSTi)]. The titanium surface treated by the femtosecond laser and sandblasting showed higher biomineralization activity and lower cytotoxicity in simulated body fluid and lactate dehydrogenase assays. Compared to the control surface, the multifunctional titanium surface induced a better cellular response in terms of proliferation, differentiation, mineralization and collagen secretion. Further investigation of macrophage polarization revealed that increased anti-inflammatory factor secretion and decreased proinflammatory factor secretion occurred in the early response of macrophages. Based on the above results, the synergistic effect of the surface properties produced an excellent cellular response at the bone-implant interface, which was mainly reflected by the promotion of early ossteointegration and macrophage polarization.


Screening of metabolic markers present in Oxytropis by UHPLC-Q-TOF/MS and preliminary pharmacophylogenetic investigation.

  • Xin Jia‎ et al.
  • Frontiers in plant science‎
  • 2022‎

Plants belonging to the Oxytropis genus, family Leguminosae, are found throughout the world, with about 80 species mainly distributed in northwest and northeast China. The plants have medicinal properties and many plants have been used as folk medicine for the treatment of colds, inflammation of carbuncle swelling, pain, and different types of bleeding. In recent years, due to the reduced availability of wild resources and increased clinical demand, additional Oxytropis species have been used in Mongolian medicine. This study explored the medicinal potential of four Oxytropis species, investigating their phylogeny, chemical components, and pharmacological activities. Oxytropis myriophylla (Pall) DC., Oxytropis hirta Bunge, and Oxytropis bicolor Bge. were found to be closely related at the taxonomic level. While previous investigations on the bioactive constituents of Oxytropis have been limited and have concentrated largely on flavonoids and saponins, the present study established a novel UHPLC-Q-TOF/MS based on metabolite profiling to comprehensively analyze the chemical composition of the four Oxytropis species and to identify marker compounds. A total of 75 compounds were identified from the four species, with 23 identified as characteristic marker components. Twenty-six marker compounds were identified in O. myriophylla from different geographical regions. Analysis of pharmacological activity showed that extracts of O. myriophylla and O. hirta had stronger anti-inflammatory activity than the extracts from the other species. The relationships between the chemical components, traditional curative uses, and pharmacological activities were analyzed to provide a preliminary documentation of the pharmacophylogenetic characteristics of the Oxytropis family as a whole. Several marker compounds, including licoricesaponin G2, licoricesaponin J2, and glycyrrhizic acid found in O. hirta were found to have effective anti-inflammatory activity, consistent with the traditional application of reducing swelling and healing wounds. This preliminary investigation into the pharmacophylogeny of the genus Oxytropis will contribute to the conservation and exploitation of the medicinal resources of this genus.


PPAR-α improves the recovery of lung function following acute respiratory distress syndrome by suppressing the level of TGF-β1.

  • Yang Liu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Although peroxisome proliferator-activated receptor (PPAR)-α has been reported to be involved in preventing acute lung injury (ALI), the molecular regulation of post‑ALI lung recovery remains to be fully elucidated. The aim of the present study was to characterize the mechanism by which PPAR‑α prevents ALI and examine the role of PPAR‑α in the recovery of lung function following acute respiratory distress syndrome (ARDS). Reverse transcription‑quantitative‑polymerase chain reaction and western blot analyses suggested that PPAR‑α was effective in suppressing transforming growth factor (TGF)‑β1 in HLF cells and RAW 264.7 cells. In an ALI mouse model, PPAR‑α treatment prior to stimulation with lipopolysaccharide (LPS) resulted in a decrease in the expression of TGF‑β1 in bronchoalveolar lavage fluid (BALF), peripheral blood and splenocytes. The injection of a virus expressing short hairpin PPAR‑α into mice following LPS treatment resulted in a dose‑dependent increase in lung resistance index and decrease in dynamic compliance, and a significant increase in BALF protein, which indicated PPAR‑α was essential for the recovery of lung function following ALI. Of note, the serum expression of PPAR‑α was inversely correlated with TGF‑β1 and negatively correlated with disease severity in patients with ARDS. These data suggested that PPAR‑α was essential for the recovery of lung function following ALI by the suppression of TGF‑β1, which reveals a previously unappreciated mechanism controlling post‑ALI lung recovery.


Effect of molecular distillation on the anti-inflammatory activity and neurotoxicity of Asarum essential oil.

  • Yang Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Asarum essential oil (AEO) has been shown to have good pharmacological activities for the anti-inflammatory and analgesic effects, but increasing the dose may cause toxicity. Therefore, we studied the toxic and pharmacodynamic components of AEO by molecular distillation (MD). Anti-inflammatory activity was assessed using RAW264.7 cells. Neurotoxicity was assessed in PC12 cells and the overall toxicity of AEO was evaluated in the mouse acute toxicity assay. The results showed that AEO is primarily composed of safrole, methyl eugenol, and 3,5-dimethoxytoluene. After MD, three fractions were obtained and contained different proportions of volatile compounds relative to the original oil. The heavy fraction had high concentrations of safrole and methyl eugenol, while the light fraction contained high concentrations of α-pinene and β- pinene. The original oil and all three fractions exhibited anti-inflammatory effects, but the light fraction demonstrated more excellent anti-inflammatory activity than the other fractions. Asarum virgin oil and MD products are all neurotoxic. The exposure of PC12 cells to high concentrations of AEO resulted in abnormal nuclei, an increased number of apoptotic cells, increased ROS formation, and decreased SOD levels. Moreover, the results of acute toxicity tests in mice revealed that the light fractions were less toxic than virgin oils and other fractions. In summary, the data suggest that the MD technology enables the enrichment and separation of essential oil components and contributes to the selection of safe concentrations of AEO.


Comparison of Physicochemical Characteristics and Macrophage Immunostimulatory Activities of Polysaccharides from Chlamys farreri.

  • Fulin Shi‎ et al.
  • Marine drugs‎
  • 2020‎

To address the structure-activity relationship of Chlamys farreri polysaccharides on their immunostimulatory efficacy, two polysaccharides (CFP-1 and CFP-2) were extracted from Chlamys farreri by hot water extraction, and separated through column chromatography. The isolated CFPs were chemically analyzed to clarify their physicochemical characteristics and cultured with murine macrophage RAW264.7 cells, in order to evaluate their immunostimulatory efficacy. Despite the fact that both CFP-1 and CFP-2 were mainly comprised of glucose lacking the triple-helix structure, as revealed through preliminary physicochemical analyses, obvious differences in regard to molecular weight (Mw), glucuronic acid content (GAc) and branching degree (BD) were observed between CFP-1 and CFP-2. In in vitro immunostimulatory assays for macrophage RAW264.7 cells, it was demonstrated that CFP-2 with larger Mw, more GAc and BD could evidently promote phagocytosis and increase the production of NO, IL-6, TNF-α and IL-1β secretion, by activating the expression of iNOS, IL-6, TNF-α and IL-1β genes, respectively. Hence, CFP-2 shows great promise as a potential immunostimulatory agent in the functional foods and nutraceutical industry, while CFP-1, with lower molecular weight, less GAc and BD, displays its weaker immunostimulatory efficacy, based on the indistinctive immunostimulatory parameters of CFP-1.


Neutrophil elastase triggers the development of autoimmune diabetes by exacerbating innate immune responses in pancreatic islets of non-obese diabetic mice.

  • Lingling Shu‎ et al.
  • Clinical science (London, England : 1979)‎
  • 2020‎

Type 1 diabetes is an autoimmune disease resulted from self-destruction of insulin-producing pancreatic β cells. However, the pathological pathways that trigger the autoimmune destruction remain poorly understood. Clinical studies have demonstrated close associations of neutrophils and neutrophil elastase (NE) with β-cell autoimmunity in patients with Type 1 diabetes. The present study aims to investigate the impact of NE inhibition on development of autoimmune diabetes in NOD mice. NE pharmacological inhibitor (sivelestat) or biological inhibitor (elafin) was supplemented into NOD mice to evaluate their effects on islet inflammation and diabetogenesis. The impact of NE inhibition on innate and adaptive immune cells was measured with flow cytometry and immunohistochemistry. A significant but transient increase in neutrophil infiltration accompanied with elevated NE activity was observed in the neonatal period of NOD mice. Treatment of NOD mice with sivelestat or elafin at the early age led to a marked reduction in spontaneous development of insulitis and autoimmune diabetes. Mechanistically, inhibition of NE significantly attenuated infiltration of macrophages and islet inflammation, thus ameliorating cytotoxic T cell-mediated autoimmune attack of pancreatic β cells. In vitro studies showed that NE directly induced inflammatory responses in both min6 β cells and RAW264.7 macrophages, and promoted macrophage migration. These findings support an important role of NE in triggering the onset and progression of β-cell autoimmunity, and suggest that pharmacological inhibition of NE may represent a promising therapeutic strategy for treatment of autoimmune diabetes.


The SWGEDWGEIW from Soybean Peptides Reduces Insulin Resistance in 3T3-L1 Adipocytes by Activating p-Akt/GLUT4 Signaling Pathway.

  • Guofu Yi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with anti-diabetic properties. Notably, the protective mechanism of the single peptide SWGEDWGEIW (TSP) from soybean peptides (SBPs) on insulin resistance of adipocytes in an inflammatory state was investigated by detecting the lipolysis and glucose absorption and utilization of adipocytes. The results showed that different concentrations of TSP (5, 10, 20 µg/mL) intervention can reduce 3T3-L1 adipocytes' insulin resistance induced by inflammatory factors in a dose-dependent manner and increase glucose utilization by 34.2 ± 4.6%, 74.5 ± 5.2%, and 86.7 ± 6.1%, respectively. Thus, TSP can significantly alleviate the lipolysis of adipocytes caused by inflammatory factors. Further mechanism analysis found that inflammatory factors significantly reduced the phosphorylation (p-Akt) of Akt, two critical proteins of glucose metabolism in adipocytes, and the expression of GLUT4 protein downstream, resulting in impaired glucose utilization, while TSP intervention significantly increased the expression of these two proteins. After pretreatment of adipocytes with PI3K inhibitor (LY294002), TSP failed to reduce the inhibition of p-Akt and GLUT4 expression in adipocytes. Meanwhile, the corresponding significant decrease in glucose absorption and the increase in the fat decomposition of adipocytes indicated that TSP reduced 3T3-L1 adipocytes' insulin resistance by specifically activating the p-Akt/GLUT4 signal pathway. Therefore, TSP has the potential to prevent obesity-induced adipose inflammation and insulin resistance.


Identification and experimental validation of key m6A modification regulators as potential biomarkers of osteoporosis.

  • Yanchun Qiao‎ et al.
  • Frontiers in genetics‎
  • 2022‎

Osteoporosis (OP) is a severe systemic bone metabolic disease that occurs worldwide. During the coronavirus pandemic, prioritization of urgent services and delay of elective care attenuated routine screening and monitoring of OP patients. There is an urgent need for novel and effective screening diagnostic biomarkers that require minimal technical and time investments. Several studies have indicated that N6-methyladenosine (m6A) regulators play essential roles in metabolic diseases, including OP. The aim of this study was to identify key m6A regulators as biomarkers of OP through gene expression data analysis and experimental verification. GSE56815 dataset was served as the training dataset for 40 women with high bone mineral density (BMD) and 40 women with low BMD. The expression levels of 14 major m6A regulators were analyzed to screen for differentially expressed m6A regulators in the two groups. The impact of m6A modification on bone metabolism microenvironment characteristics was explored, including osteoblast-related and osteoclast-related gene sets. Most m6A regulators and bone metabolism-related gene sets were dysregulated in the low-BMD samples, and their relationship was also tightly linked. In addition, consensus cluster analysis was performed, and two distinct m6A modification patterns were identified in the low-BMD samples. Subsequently, by univariate and multivariate logistic regression analyses, we identified four key m6A regulators, namely, METTL16, CBLL1, FTO, and YTHDF2. We built a diagnostic model based on the four m6A regulators. CBLL1 and YTHDF2 were protective factors, whereas METTL16 and FTO were risk factors, and the ROC curve and test dataset validated that this model had moderate accuracy in distinguishing high- and low-BMD samples. Furthermore, a regulatory network was constructed of the four hub m6A regulators and 26 m6A target bone metabolism-related genes, which enhanced our understanding of the regulatory mechanisms of m6A modification in OP. Finally, the expression of the four key m6A regulators was validated in vivo and in vitro, which is consistent with the bioinformatic analysis results. Our findings identified four key m6A regulators that are essential for bone metabolism and have specific diagnostic value in OP. These modules could be used as biomarkers of OP in the future.


Effects of Inflammatory Factor Expression Regulated by 12/15 Lipoxygenase on Obesity-Related Nephropathy.

  • Nian Liu‎ et al.
  • Nutrients‎
  • 2022‎

It has been demonstrated that 12/15-lipoxygenase (LO) contributes to insulin resistance by promoting beta cells' exposure to inflammation. We investigate the mechanism by which 12/15-LO regulates the expression of inflammatory factors in obesity-related glomerular disease (ORG).


Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats.

  • Xin Qi‎ et al.
  • Scientific reports‎
  • 2017‎

In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.


Histone deacetylase 6 modulates macrophage infiltration during inflammation.

  • Bing Yan‎ et al.
  • Theranostics‎
  • 2018‎

Mice with histone deacetylase 6 (HDAC6) deficiency grow and develop normally but exhibit impaired immune response. The molecular mechanisms for this phenotype remain largely elusive. Methods: A mouse acute peritonitis model was used to study the infiltration of neutrophils and monocyte-derived macrophages. In vitro cell motility assays were performed to analyze monocyte/macrophage recruitment. Fluorescence microscopy and flow cytometry were performed to examine the phagocytic ability of macrophages. Immunofluorescence microscopy was used to investigate protein localization, protrusion formation, and microtubule acetylation. Results: HDAC6 deficiency does not affect neutrophil infiltration, but instead attenuates the infiltration of monocyte-derived macrophages into the peritoneal cavity. HDAC6 plays a specific role in monocyte/macrophage recruitment. Loss of HDAC6 suppresses the phagocytic capacity of macrophages challenged with E. coli. Lipopolysaccharide stimulation results in the translocation of HDAC6 and cortactin from the cytosol to the cell periphery, promotes the formation of filopodial protrusions, and enhances microtubule acetylation around the microtubule-organizing center, all of which are abrogated by HDAC6 deficiency. Conclusion: These findings implicate HDAC6 in the innate immune response and suggest that it may serve as a promising target for the treatment of macrophage-associated immune diseases.


RNA 2'-O-Methyltransferase Fibrillarin Facilitates Virus Entry Into Macrophages Through Inhibiting Type I Interferon Response.

  • Panpan Li‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Type I interferons (IFN-I) play crucial roles in antiviral immune responses through inducing multiple antiviral interferon stimulated genes (ISGs). RNA modifications are emerging as critical post-transcriptional regulators of gene expression programs, which affect diverse biological processes. 2'-O-methylation (Nm) is one of the most common types of RNA modifications found in several kinds of RNA. However, the function and underlying mechanism of Nm modification in regulating viral infection and innate immunity are largely unknown. Here we found that 2'-O-methyladenosine (Am) on poly A+ RNA was increased in virus infected-macrophages. Functional screening identified RNA 2'-O-methyltransferase Fibrillarin (FBL) in facilitating viral infection. Down-regulation of FBL inhibited viral infection through blocking virus entry into macrophages. Furthermore, knockdown of FBL could reduce viral entry by increasing ISGs expression through IFN-I signaling. These results indicated that FBL-mediated Nm modifications of RNA may avoid the innate immune recognition, thereby maintain immune homeostasis. Once FBL is down-regulated, the decreased Nm modifications of RNA in macrophages may act as "non-self" RNA and be recognized by RNA sensor interferon induced with helicase C domain 1 (MDA5), leading to innate immune activation by inducing the expression of IFN-I and ISGs. Therefore, our finding reveals a new role of FBL and its mediated RNA Nm modifications in facilitating viral infection and inhibiting innate immune response, adding mechanistic insight to the RNA modifications in infection and immunity.


Increased plasma genistein after bariatric surgery could promote remission of NAFLD in patients with obesity.

  • Geng Wang‎ et al.
  • Frontiers in endocrinology‎
  • 2022‎

Bariatric surgery is associated with a positive effect on the progress of non-alcoholic associated fatty liver disease (NAFLD). Although weight loss is the obvious mechanism, there are also weight-independent mechanisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: