Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Preparation of Antioxidant Peptide by Microwave- Assisted Hydrolysis of Collagen and Its Protective Effect Against H2O2-Induced Damage of RAW264.7 Cells.

  • Yan Li‎ et al.
  • Marine drugs‎
  • 2019‎

Antioxidant peptides have elicited interest for the versatility of their use in the food and pharmaceutical industry. In the current study, antioxidant peptides were prepared by microwave-assisted alkaline protease hydrolysis of collagen from sea cucumber (Acaudina molpadioides). The results showed that microwave irradiation significantly improved the degree of hydrolysis of collagen and the hydroxyl radical (OH⋅) scavenging activity of hydrolysate. The content and OH⋅ scavenging activity of collagen peptides with molecular weight ≤ 1 kDa (CPS) in the hydrolysate obtained at 250 W increased significantly compared with the non-microwave-assisted control. CPS could scavenge OH⋅ and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in a dose-dependent manner. The scavenging activity of OH⋅ and DPPH radical was 93.1% and 41.2%, respectively, at CPS concentration of 1 mg/mL. CPS could significantly promote RAW264.7 cell proliferation and reduce the Reactive Oxygen Species (ROS) level of H2O2-induced damage in RAW264.7 cells in a dose-dependent manner. Furthermore, all CPS-treated groups exhibited an increase in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and a decrease in malondialdehyde (MDA) level compared with the control. These results showed that CPS could effectively protect RAW264.7 cells from H2O2-induced damage, implying the potential utilization of CPS as a natural antioxidant for food and pharmaceutical applications.


Physicochemical Properties of Collagen from Acaudina Molpadioides and Its Protective Effects against H2O2-Induced Injury in RAW264.7 Cells.

  • Jie Li‎ et al.
  • Marine drugs‎
  • 2020‎

Collagen is a promising biomaterial used in the beauty and biomedical industries. In this study, the physicochemical characterization, antioxidant activities, and protective effects against H2O2-induced injury of collagen isolated from Acaudina molpadioides were investigated. The amino acid composition analysis showed that the collagen was rich in glycine (Gly), alanine (Ala), and glutamic acid (Glu), but poor in tyrosine (Tyr) and phenylalanine (Phe). Zeta potential analysis revealed that the isoelectric point (pI) of collagen from Acaudina molpadioides was about 4.25. It possessed moderate scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals in a dose-dependent manner. In addition, the collagen was able to effectively improve cell viability and morphology, inhibit the production of Malondialdehyde (MDA), and increase the activities of Superoxide Dismutase (SOD) and Glutathione Peroxidase (GSH-Px) in cultured RAW264.7 cells, resulting in a protective effect against H2O2-induced injury. Overall, the results showed that collagen extracted from A. molpadioides has promising prospects in the beauty and cosmetics industries.


High mobility group box-1-toll-like receptor 4-phosphatidylinositol 3-kinase/protein kinase B-mediated generation of matrix metalloproteinase-9 in the dorsal root ganglion promotes chemotherapy-induced peripheral neuropathy.

  • Haibo Gu‎ et al.
  • International journal of cancer‎
  • 2020‎

Chemotherapy-induced peripheral neuropathy (CIPN) is a significant side effect of chemotherapeutics. The mechanisms of CIPN remain substantially unidentified, although inflammation-induced peripheral sensitization has been indicated as an important factor. Here, we aimed to illustrate the role of the matrix metalloproteinase (MMP)-9-related signaling pathway in the process of CIPN. Oxaliplatin (L-OHP) was administered to mice to establish the CIPN model. Gelatin zymography was used to measure MMP-9/2 activities. Western blotting and immunohistochemistry were used to measure the expression of high-mobility group box-1 (HMGB-1), calcitonin gene-related peptide and ionized calcium-binding adapter molecule 1. Mechanical withdrawal was measured by von Frey hairs testing. Raw 264.7 cells and SH-SY5Y cells were cultured to investigate cell signaling in vitro. Here, we report that L-OHP-induced mechanical pain in mice with significant MMP-9/2 activation in dorsal root ganglion (DRG) neurons. MMP-9 inhibition or knockout alleviated the occurrence of CIPN directly. MMP-9/2 were released from macrophages and neurons in the DRG via the HMGB-1-toll-like receptor 4 (TLR4)-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) axis, because MMP-9/2 activities could be reduced by macrophage scavengers or PI3Kγ knockout in CIPN mice. The in vitro data revealed that induced MMP-9 activity by recombinant HMGB-1 could be abolished by TLR4, PI3K or Akt inhibitors. Finally, it was shown that N-acetyl-cysteine (NAC) could reduce MMP-9/2 activities and attenuate CIPN effectively and safely. The HMGB-1-TLR4-PI3K/Akt-MMP-9 axis is involved in the crosstalk between macrophages and neurons in the pathological process of CIPN in mice. Direct inhibition of MMP-9 by NAC may be a potential therapeutic regimen for CIPN treatment.


Purification, Identification and Molecular Docking of Immunomodulatory Peptides from the Heads of Litopenaeus vannamei.

  • Weiwei Jiang‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2022‎

In order to realize the high-value utilization of Litopenaeus vannamei (L. vannamei) heads, immunomodulatory peptides were prepared from the enzymatic hydrolysate of L. vannamei heads, and the action mechanism of immunomodulatory peptides was determined by molecular docking. The results showed that six proteases were used to hydrolyze L. vannamei head proteins, with the animal protease hydrolysate exhibiting the highest macrophage relative proliferation rate (MRPR). The enzymatic products were then sequentially purified by ultrafiltration, Sephadex G-15 gel chromatography, identified by liquid chromatography-mass spectrometry (LC-MS/MS), and finally selected for six immunomodulatory peptides (PSPFPYFT, SAGFPEGF, GPQGPPGH, QGF, PGMR, and WQR). These peptides maintained good immune activity under heat treatment, pH treatment, and in vitro gastrointestinal digestion. Molecular docking analysis indicated that these peptides showed great binding to both toll-like receptor 2 and 4 (TLR2 and TLR4/MD-2), leading to immunomodulation. The discarded L. vannamei heads in this article are considered to be promising food-borne immunomodulators that contribute to enhancing the immune function of the body.


Feruloylated arabinoxylan from wheat bran inhibited M1-macrophage activation and enhanced M2-macrophage polarization.

  • Jing Wang‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

The effects of feruloylated arabinoxylan (AX) on typically activated inflammatory macrophages (M1) and alternatively anti-inflammatory macrophages (M2) and its possible mechanisms were investigated. The results revealed that feruloylated AX was composed of 37.63% arabinose and 52.23% xylose, with a weight-average molecular weight of 1.1374 × 104 Da, and bound ferulic acid content of 10.84 mg/g. Besides, feruloylated AX (50-1000 μg/mL) markedly downregulated the mRNA expressions of NO, IL-1β, TNF-α, IL-6, and IL-23a, and reduced the phosphorylation levels of p38, ERK, and JNK in M1. In contrast, the mRNA expressions of Arg-1, Mrc-1, and CCL22 were significantly upregulated by feruloylated AX (50-1000 μg/mL), and the phosphorylation level of AKT was significantly increased in M2. Overall, our results indicated that feruloylated AX could have an inhibitory or a promoting effect on already activated macrophages, and MAPK or PI3K signaling pathways might be involved in this regulation.


LXR agonist inhibits inflammation through regulating MyD88 mRNA alternative splicing.

  • Ni Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Liver X receptors (LXRs) are important regulators of cholesterol metabolism and inflammatory responses. LXR agonists exhibit potently anti-inflammatory effects in macrophages, which make them beneficial to anti-atherogenic therapy. In addition to transrepressive regulation by SUMOylation, LXRs can inhibit inflammation by various mechanisms through affecting multiple targets. In this study, we found that the classic LXR agonist T0901317 mediated numerous genes containing alternative splice sites, including myeloid differentiation factor 88 (MyD88), that contribute to inflammatory inhibition in RAW264.7 macrophages. Furthermore, T0901317 increased level of alternative splice short form of MyD88 mRNA by down-regulating expression of splicing factor SF3A1, leading to nuclear factor κB-mediated inhibition of inflammation. In conclusion, our results suggest for the first time that the LXR agonist T0901317 inhibits lipopolysaccharide-induced inflammation through regulating MyD88 mRNA alternative splicing involved in TLR4 signaling pathway.


Synthesis and Characterization of Fucoidan-Chitosan Nanoparticles Targeting P-Selectin for Effective Atherosclerosis Therapy.

  • Mingying Liu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Atherosclerosis is the key pathogenesis of cardiovascular diseases; oxidative stress, which is induced by the generated excess reactive oxygen species (ROS), has been a crucial mechanism underlying this pathology. Nanoparticles (NPs) represent a novel strategy for the development of potential therapies against atherosclerosis, and multifunctional NPs possessing antioxidative capacities hold promise for amelioration of vascular injury caused by ROS and for evading off-target effects; materials that are currently used for NP synthesis often serve as vehicles that do not possess intrinsic biological activities; however, they may affect the surrounding healthy environment due to decomposition of products. Herein, we used nontoxic fucoidan, a sulfated polysaccharide derived from a marine organism, to develop chitosan-fucoidan nanoparticles (CFNs). Then, by binding to P-selectin, an inflammatory adhesion exhibited molecule expression on the endothelial cells and activated platelets, blocking leukocyte recruitment and rolling on platelets and endothelium. CFNs exhibit antioxidant and anti-inflammatory properties. Nevertheless, by now, the application of CFNs for the target delivery regarding therapeutics specific to atherosclerotic plaques is not well investigated. The produced CFNs were physicochemically characterized using transmission electron microscopy (TEM), together with Fourier transform infrared spectroscopy (FTIR). Evaluations of the in vitro antioxidant as well as anti-inflammatory activities exhibited by CFNs were based on the measurement of their ROS scavenging abilities and investigating inflammatory mediator levels. The in vivo pharmacokinetics and binding efficiency of the CFNs to atherosclerotic plaques were also evaluated. The therapeutic effects indicated that CFNs effectively suppressed local oxidative stress and inflammation by targeting P-selectin in atheromatous plaques and thereby preventing the progression of atherosclerosis.


Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair.

  • Xin Liu‎ et al.
  • Bioactive materials‎
  • 2022‎

Although with the good biological properties, silk fibroin (SF) is immensely restrained in long-distance vascular defect repair due to its relatively fast degradation and inferior mechanical properties. It is necessary to construct a multifunctional composite scaffold based on SF. In this study, a novel magnetic SF scaffold (MSFCs) was prepared by an improved infiltration method. Compared with SF scaffold (SFC), MSFCs were found to have better crystallinity, magnetocaloric properties, and mechanical strength, which was ascribed to the rational introduction of iron-based magnetic nanoparticles (MNPs). Moreover, in vivo and in vitro experiments demonstrated that the degradation of MSFCs was significantly extended. The mechanism of delayed degradation was correlated with the dual effect that was the newly formed hydrogen bonds between SFC and MNPs and the complexing to tyrosine (Try) to inhibit hydrolase by internal iron atoms. Besides, the β-crystallization of protein in MSFCs was increased with the rise of iron concentration, proving the beneficial effect after MNPS doped. Furthermore, although macrophages could phagocytose the released MNPs, it did not affect their function, and even a reasonable level might cause some cytokines to be upregulated. Finally, in vitro and in vivo studies demonstrated that MSFCs showed excellent biocompatibility and the growth promotion effect on CD34-labeled vascular endothelial cells (VECs). In conclusion, we confirm that the doping of MNPs can significantly reduce the degradation of SFC and thus provide an innovative perspective of multifunctional biocomposites for tissue engineering.


Notch Signaling Ligand Jagged1 Enhances Macrophage-Mediated Response to Helicobacter pylori.

  • Junjie Wen‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Helicobacter pylori (H. pylori) is one of the gram-negative bacteria that mainly colonize the stomach mucosa and cause many gastrointestinal diseases, such as gastritis, peptic ulcer, and gastric cancer. Macrophages play a key role in eradicating H. pylori. Recent data have shown that Notch signaling could modulate the activation and bactericidal activities of macrophages. However, the role of Notch signaling in macrophages against H. pylori remains unclear. In the present study, in the co-culture model of macrophages with H. pylori, the inhibition of Notch signaling using γ-secretase decreased the expression of inducible nitric oxide synthase (iNOS) and its product, nitric oxide (NO), and downregulated the secretion of pro-inflammatory cytokine and attenuated phagocytosis and bactericidal activities of macrophages to H. pylori. Furthermore, we identified that Jagged1, one of Notch signaling ligands, was both upregulated in mRNA and protein level in activated macrophages induced by H. pylori. Clinical specimens showed that the number of Jagged1+ macrophages in the stomach mucosa from H. pylori-infected patients was significantly higher than that in healthy control. The overexpression of Jagged1 promoted bactericidal activities of macrophages against H. pylori and siRNA-Jagged1 presented the opposite effect. Besides, the addition of exogenous rJagged1 facilitated the pro-inflammatory mediators of macrophages against H. pylori, but the treatment of anti-Jagged1 neutralizing antibody attenuated it. Taken together, these results suggest that Jagged1 is a promoting molecule for macrophages against H. pylori, which will provide insight for exploring Jagged1 as a novel therapeutic target for the control of H. pylori infection.


Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidase-inspired strategy for improving antigen cross-presentation via lipid peroxidation.

  • Runping Su‎ et al.
  • Biomaterials‎
  • 2021‎

Current efforts to develop novel vaccine nanotechnologies to increase cytotoxic T lymphocytes have met the challenges of the limited efficacy of antigen cross-presentation. Recent studies have uncovered a unique biological mechanism by which activation of the NADPH oxidase 2 (NOX2) complex, a major source of reactive oxygen species (ROS), enhances the cross-presentation by antigen-presenting cells (APCs). Inspired by the NOX2 mechanism, we devise biomineralized nanovaccines named NVscp, which are developed by in situ growth of calcium peroxide on nanovaccines self-assembled with the model antigen ovalbumin. The ~80 nm NVscp efficiently flow to the draining lymph nodes, where they accumulate within APC endo-/lysosomes, and generate a rapid burst of ROS in response to the acidic endo-/lysosomal environment with the subsequent endo-/lysosomal lipid peroxidation. Accompanied by the process, NVscp stimulate distinct APCs maturation and antigen presentation to T lymphocytes. Notably, high levels of antigen-specific CD8+ T cell responses, accompanied by the induction of CD4+ T helper cells, are achieved. More importantly, NVscp significantly increase the ratios of intratumoral CD8+ T/regulatory T cells and achieve prominent tumor therapy effects. The NOX2-inspired biomineralized NVscp represent an effective and easily applicable strategy that enables the strong cross-presentation of exogenous vaccine antigens.


IGFBP7 acts as a negative regulator of RANKL-induced osteoclastogenesis and oestrogen deficiency-induced bone loss.

  • Chenyi Ye‎ et al.
  • Cell proliferation‎
  • 2020‎

Insulin-like growth factor-binding protein 7 (IGFBP7) is a low-affinity insulin growth factor (IGF) binder that may play an important role in bone metabolism. We previously reported that IGFBP7 enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signalling pathway. In this study, we tried to reveal its function in osteoclast differentiation and osteoporosis.


Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression.

  • Meiyu Peng‎ et al.
  • Oncotarget‎
  • 2017‎

Pancreatic cancer is an aggressive malignancy that is unresponsive to conventional radiation and chemotherapy. Therefore, development of novel immune therapeutic strategies is urgently needed. L-4F, an Apolipoprotein A-I (ApoA-I) mimetic peptide, is engineered to mimic the anti-inflammatory and anti-oxidative functionalities of ApoA-I. In this work, H7 cells were orthotopically implanted in C57BL/6 mice and treated with L-4F. Then, pancreatic cancer progression and the inflammatory microenvironment were investigated in vivo. The cytotoxicity of L-4F toward H7 cells was assessed in vitro. Furthermore, we investigated the effects of L-4F on macrophage polarization by analyzing the polarization and genes of mouse bone marrow-derived macrophages in vitro. The results show that L-4F substantially reduced the tumorigenicity of H7 cells. L-4F inhibited inflammation by reducing the accumulation of inflammatory cells, such as IL-17A-, IL-4-, GM-CSF-, IL-1β-, and IL-6-producing cells and Th1 and Th17. Notably, L-4F also decreased the percentage of macrophages in tumor tissues, especially M2 macrophages (CD11b+F4/80+CD206+), which was also confirmed in vitro. Additionally, the expression of the M2 marker genes Arg1, MRC1, and CCL22 and the inflammatory genes IL-6, iNOS, and IL-12 was decreased by L-4F, indicating that L-4F prevents M2 type macrophage polarization. However, L-4F could not directly attenuate H7 cell invasion or proliferation and did not induce apoptosis. In addition, L-4F potently down-regulated STAT3, JNK and ERK signaling pathways but not affects the phosphorylation of p38 in RAW 264.7 cells. These results suggest that L-4F exhibits an effective therapeutic effect on pancreatic cancer progression by inhibiting tumor-associated macrophages and inflammation.


Characterization, Recombinant Production, and Bioactivity of a Novel Immunomodulatory Protein from Hypsizygus marmoreus.

  • Shuhui Yu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

A novel fungal immunomodulatory protein (FIP), identified as FIP-hma, was discovered in the genome of an edible mushroom Hypsizygus marmoreus. Bioinformatics analysis suggested FIP-hma contained the cerato-platanin (CP) conserved domain and was categorized into Cerato-type FIP. In phylogenetic analysis, FIP-hma was clustered into a new branch of the FIP family, displaying large system divergence from most of the other FIPs. The higher gene expression of FIP-hma was observed during the vegetative growth stages than that during the reproductive growth stages. In addition, the cDNA sequence of FIP-hma was cloned and successfully expressed in Escherichia coli (E. coli) BL21(DE3). The recombinant protein of FIP-hma (rFIP-hma) was neatly purified and isolated by Ni-NTA and SUMO-Protease. The iNOS, IL-6, IL-1β, and TNF-α levels of RAW 264.7 macrophages were upregulated by rFIP-hma, indicating its activation of an immune response by regulating central cytokines. No cytotoxic effects were observed in an MTT test. The findings of this work discovered a novel immunoregulatory protein from H. marmoreus, provided a systematic bioinformatic profile, suggested an effective approach for its heterologous recombinant production, and reported its potent immunoregulatory activity in macrophages. This study sheds light on the physiological function research of FIPs and their further industrial utilization.


Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc.

  • Yan Li‎ et al.
  • PeerJ‎
  • 2016‎

Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future.


A novel cecropin B-derived peptide with antibacterial and potential anti-inflammatory properties.

  • Jiarong Wang‎ et al.
  • PeerJ‎
  • 2018‎

Cecropins, originally found in insects, are a group of cationic antimicrobial peptides. Most cecropins have an amphipathic N-terminal segment and a largely hydrophobic C-terminal segment, and normally form a helix-hinge-helix structure. In this study, we developed the novel 32-residue cecropin-like peptide cecropin DH by deleting the hinge region (Alanine-Glycine-Proline) of cecropin B isolated from Chinese oak silk moth, Antheraea pernyi. Cecropin DH possesses effective antibacterial activity, particularly against Gram-negative bacteria, with very low cytotoxicity against mammalian cells. Interactions between cecropin DH and the highly anionic lipopolysaccharide (LPS) component of the Gram-negative bacterial outer membrane indicate that it is capable of dissociating LPS micelles and disrupting LPS aggregates into smaller assemblies, which may play a vital role in its antimicrobial activity. Using LPS-stimulated mouse macrophage RAW264.7 cells, we found that cecropin DH exerted higher potential anti-inflammatory activity than cecropin B, as demonstrated by the inhibition of pro-inflammatory cytokines nitric oxide production and secretion of tumor necrosis factor-α. In conclusion, cecropin DH has potential as a therapeutic agent for both antibacterial and anti-inflammatory applications.


α-Mangostin Alleviated Lipopolysaccharide Induced Acute Lung Injury in Rats by Suppressing NAMPT/NAD Controlled Inflammatory Reactions.

  • Mengqing Tao‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

α-Mangostin (MAN) is a bioactive xanthone isolated from mangosteen. This study was designed to investigate its therapeutic effects on acute lung injury (ALI) and explore the underlying mechanisms of action. Rats from treatment groups were subject to oral administration of MAN for 3 consecutive days beforehand, and then ALI was induced in all the rats except for normal controls via an intraperitoneal injection with lipopolysaccharide. The severity of disease was evaluated by histological examination and hematological analysis. Protein expressions in tissues and cells were examined with immunohistochemical and immunoblotting methods, respectively. The levels of cytokines and nicotinamide adenine dinucleotide (NAD) were determined using ELISA and colorimetric kits, respectively. It was found that MAN treatment significantly improved histological conditions, reduced leucocytes counts, relieved oxidative stress, and declined TNF-α levels in ALI rats. Meanwhile, MAN treatment decreased expressions of nicotinamide phosphoribosyltransferase (NAMPT) and Sirt1 both in vivo and in vitro, which was accompanied with a synchronized decline of NAD and TNF-α. Immunoblotting assay further showed that MAN downregulated HMGB1, TLR4, and p-p65 in RAW 264.7 cells. MAN induced declines of both HMGB1/TLR4/p-p65 and TNF-α were substantially reversed by cotreatment with nicotinamide mononucleotide or NAD. These results suggest that downregulation of NAMPT/NAD by MAN treatments contributes to the alleviation of TLR4/NF-κB-mediated inflammations in macrophage, which is essential for amelioration of ALI in rats.


Multiple Immunosuppressive Effects of CpG-c41 on Intracellular TLR-Mediated Inflammation.

  • Wancheng Liu‎ et al.
  • Mediators of inflammation‎
  • 2017‎

A growing body of literature suggests that most chronic autoimmune diseases are associated with inappropriate inflammation mediated by Toll-like receptor (TLR) 3, TLR7/8, or TLR9. Therefore, research into blocking TLR activation to treat these disorders has become a hot topic. Here, we report the immunomodulatory properties of a nonstimulatory CpG-containing oligodeoxynucleotide (CpG-ODN), CpG-c41, which had previously only been known as a TLR9 antagonist. In this study, we found that both in vitro and in vivo CpG-c41 decreased levels of various proinflammatory factors that were induced by single activation or coactivation of intracellular TLRs, but not membrane-bound TLRs, no matter what downstream signal pathways the TLRs depend on. Moreover, CpG-c41 attenuated excessive inflammation in the imiquimod-induced psoriasis-like mouse model of skin inflammation by suppressing immune cell infiltration and release of inflammatory factors. We also found evidence that the immunosuppressive effects of CpG-c41 on other intracellular TLRs are mediated by a TLR9-independent mechanism. These results suggest that CpG-c41 acts as an upstream of signaling cascades, perhaps on the processes of ligand internalization and transfer. Taken together, these results suggest that CpG-c41 disrupts various aspects of intracellular TLR activation and provides a deeper insight into the regulation of innate immunity.


Ginkgolide A Ameliorates LPS-Induced Inflammatory Responses In Vitro and In Vivo.

  • Yan Li‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Ginkgolide A (GA) is a natural compound isolated from Ginkgo biloba and has been used to treat cardiovascular diseases and diabetic vascular complications. However, only a few studies have been conducted on the anti-inflammatory effects of GA. In particular, no related reports have been published in a common inflammation model of lipopolysaccharide (LPS)-stimulated macrophages, and the anti-inflammatory mechanisms of GA have not been fully elucidated. In the present study, we extensively investigated the anti-inflammatory potential of GA in vitro and in vivo. We showed that GA could suppress the expression of pro-inflammatory mediators (cyclooxygenase-2 (COX-2) and nitric oxide (NO) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β) in LPS-treated mouse peritoneal macrophages, mouse macrophage RAW264.7 cells, and differentiated human monocytes (dTHP-1) in vitro. These effects were partially carried out via downregulating Nuclear factor kappa-B (NF-κB), Mitogen-activated protein kinases (MAPKs) (p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK), but not c-Jun N-terminal kinase (JNK), and activating the AMP-activated protein kinase (AMPK) signaling pathway also seems to be important. Consistently, GA was also shown to inhibit the LPS-stimulated release of TNF-α and IL-6 in mice. Taken together, these findings suggest that GA can serve as an effective inflammatory inhibitor in vitro and in vivo.


Plumbagin protects liver against fulminant hepatic failure and chronic liver fibrosis via inhibiting inflammation and collagen production.

  • Huafeng Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Plumbagin is a quinonoid constituent extracted from Plumbago genus, and it exhibits diverse pharmacological effects. This study thoroughly investigated the effects of plumbagin on thioacetamide-induced acute and chronic liver injury. Results shown that plumbagin increased survival rate, reduced liver congestion and inflammation, and decreased macrophages and neutrophils in the fulminant hepatic failure model, and remarkably diminished liver fibrosis and inflammation in the chronic liver injury model. Furthermore, plumbagin significantly suppress the HSCs/myofibroblasts activation by reduced expression of markers α-SMA and COL-1/3, and reduced macrophage in liver. In the in vitro study, plumbagin induced apoptosis and suppressed the proliferation of LX-2 cells (human HSCs). Plumbagin treatment increased AMPK phosphorylation and attenuated NF-κB, STAT3, and Akt/mTOR signals in LX-2 cells, while SMAD2 phosphorylation was not changed. Noticeably, plumbagin promoted AMPK binding to p300 which is a cofactor of SMAD complex, this may further competitively decreases the p300/SMAD complex initiated transcription of COL-1/3 and α-SMA. Additionally, plumbagin hampered inflammation related NF-κB signal in RAW 264.7 cells. In conclusion, these findings indicate that plumbagin may be a powerful drug candidate to protect the liver from acute and chronic damage by inhibiting inflammation and collagen production.


Severe Intermittent Hypoxia Modulates the Macrophage Phenotype and Impairs Wound Healing Through Downregulation of HIF-2α.

  • Lihong Chen‎ et al.
  • Nature and science of sleep‎
  • 2022‎

Obstructive sleep apnea is prevalent in patients with diabetic foot ulcers, while the effect of intermittent hypoxia on wound healing is unclear. The objective of this study was to investigate the effect of severe intermittent hypoxia on wound healing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: