2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 123 papers

R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal.

  • Cheguo Cai‎ et al.
  • Genes & development‎
  • 2014‎

Signals from the niche play pivotal roles in regulating adult stem cell self-renewal. Previous studies indicated that the steroid hormones can expand mammary stem cells (MaSCs) in vivo. However, the facilitating local niche factors that directly contribute to the MaSC expansion remain unclear. Here we identify R-spondin1 (Rspo1) as a novel hormonal mediator in the mammary gland. Pregnancy and hormonal treatment up-regulate Rspo1 expression. Rspo1 cooperates with another hormonal mediator, Wnt4, to promote MaSC self-renewal through Wnt/β-catenin signaling. Knockdown of Rspo1 and Wnt4 simultaneously abolishes the stem cell reconstitution ability. In culture, hormonal treatment that stimulates the expression of both Rspo1 and Wnt4 can completely substitute for exogenous Wnt proteins, potently expand MaSCs, and maintain their full development potential in transplantation. Our data unveil the intriguing concept that hormones induce a collaborative local niche environment for stem cells.


Prognostic analysis of CD5 expression in double-hit diffuse large B-cell lymphoma and effectiveness comparison in patients treated with dose-adjusted EPOCH plus rituximab/R-CHOP regimens.

  • Fangwen Zhang‎ et al.
  • Blood and lymphatic cancer : targets and therapy‎
  • 2019‎

To compare the efficacy of rituximab, dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide and doxorubicin (DA-EPOCH-R) with traditional rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) regimens in CD5+ double-hit lymphoma (DHL) and to evaluate prognostic factors.


Persistent repression of tau in the brain using engineered zinc finger protein transcription factors.

  • Susanne Wegmann‎ et al.
  • Science advances‎
  • 2021‎

Neuronal tau reduction confers resilience against β-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.


Anatomical factors associated with the development of anterior tibial spine fractures based on MRI measurements.

  • Lei Zhang‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2023‎

Numerous studies have investigated anatomic factors for anterior cruciate ligament (ACL) injuries, such as posterior tibial slope (PTS) and notch width index (NWI). However, anterior tibial spine fracture (ATSF) as a specific pattern of ACL injury, a bony avulsion of the ACL from its insertion on the intercondylar spine of the tibia, has rarely been explored for its anatomical risk factors. Identifying anatomic parameters of the knee associated with ATSF is important for understanding injury mechanisms and prevention.


Risk factors for depression and anxiety in healthcare workers deployed during the COVID-19 outbreak in China.

  • Jie Chen‎ et al.
  • Social psychiatry and psychiatric epidemiology‎
  • 2021‎

This study was conducted to evaluate the status of depression and anxiety of healthcare workers and to explore the risk factors during the outbreak of COVID-19 in China.


Transcriptomic insight into antimicrobial peptide factors involved in the prophylactic immunity of crowded Mythimna separata larvae.

  • Hailong Kong‎ et al.
  • Developmental and comparative immunology‎
  • 2019‎

Similar to pathogenic infection, a high population density alters insect prophylactic immunity. Antimicrobial peptides (AMPs) are known to play critical roles in an insect's humoral immune response to microbial infection. We applied RNA sequencing to investigate differential gene expression levels in fat body and hemocyte samples from larvae reared in high- (10 larvae per jar) and low-density (1 larva per jar) conditions; the samples exhibited density-dependent prophylaxis. A number of AMP molecule-related proteins were annotated for the first time from 145,439 assembled unigenes from M. separata larvae. The transcript levels of AMP molecules such as gloverin-, defensin-, cecropin-, lebocin- and attacin-related unigenes were increased with the prophylactic immunity of high-density larvae. The pattern recognition receptor peptidoglycan recognition protein (PGRP), a key protein in the synthesis of AMPs in IMD- and Toll pathway-related unigenes, was also upregulated in the larvae from the high-density group. The resultant transcriptomic database was validated by the transcript levels of four selected AMP genes quantified from the high- and low-density larval groups with quantitative real-time PCR. The antimicrobial activity against gram-positive Staphylococcus aureus and Bacillus subtilis and gram-negative Edwardsiella ictaluri and Vibrio anguillarum in the hemolymph of larvae from the high-density group was significantly higher than that of larvae from the low-density group. Our findings provide the first insight into the role of AMP genes in the mechanisms of density-dependent prophylaxis in M. separata and provide new insight into the control of M. separata with biopesticides.


Identification of hub genes and regulatory factors of glioblastoma multiforme subgroups by RNA-seq data analysis.

  • Yanan Li‎ et al.
  • International journal of molecular medicine‎
  • 2016‎

Glioblastoma multiforme (GBM) is the most common malignant brain tumor. This study aimed to identify the hub genes and regulatory factors of GBM subgroups by RNA sequencing (RNA-seq) data analysis, in order to explore the possible mechanisms responsbile for the progression of GBM. The dataset RNASeqV2 was downloaded by TCGA-Assembler, containing 169 GBM and 5 normal samples. Gene expression was calculated by the reads per kilobase per million reads measurement, and nor malized with tag count comparison. Following subgroup classification by the non-negative matrix factorization, the differentially expressed genes (DEGs) were screened in 4 GBM subgroups using the method of significance analysis of microarrays. Functional enrichment analysis was performed by DAVID, and the protein-protein interaction (PPI) network was constructed based on the HPRD database. The subgroup-related microRNAs (miRNAs or miRs), transcription factors (TFs) and small molecule drugs were predicted with pre-defined criteria. A cohort of 19,515 DEGs between the GBM and control samples was screened, which were predominantly enriched in cell cycle- and immunoreaction-related pathways. In the PPI network, lymphocyte cytosolic protein 2 (LCP2), breast cancer 1 (BRCA1), specificity protein 1 (Sp1) and chromodomain-helicase-DNA-binding protein 3 (CHD3) were the hub nodes in subgroups 1-4, respectively. Paired box 5 (PAX5), adipocyte protein 2 (aP2), E2F transcription factor 1 (E2F1) and cAMP-response element-binding protein-1 (CREB1) were the specific TFs in subgroups 1-4, respectively. miR‑147b, miR‑770-5p, miR‑220a and miR‑1247 were the particular miRNAs in subgroups 1-4, respectively. Natalizumab was the predicted small molecule drug in subgroup 2. In conclusion, the molecular regulatory mechanisms of GBM pathogenesis were distinct in the different subgroups. Several crucial genes, TFs, miRNAs and small molecules in the different GBM subgroups were identified, which may be used as potential markers. However, further experimental validations may be required.


Transcriptome Analysis of Hypertrophic Heart Tissues from Murine Transverse Aortic Constriction and Human Aortic Stenosis Reveals Key Genes and Transcription Factors Involved in Cardiac Remodeling Induced by Mechanical Stress.

  • Peng Yu‎ et al.
  • Disease markers‎
  • 2019‎

Mechanical stress-induced cardiac remodeling that results in heart failure is characterized by transcriptional reprogramming of gene expression. However, a systematic study of genomic changes involved in this process has not been performed to date. To investigate the genomic changes and underlying mechanism of cardiac remodeling, we collected and analyzed DNA microarray data for murine transverse aortic constriction (TAC) and human aortic stenosis (AS) from the Gene Expression Omnibus database and the European Bioinformatics Institute.


Involvement of the Hippo pathway in regeneration and fibrogenesis after ischaemic acute kidney injury: YAP is the key effector.

  • Jing Xu‎ et al.
  • Clinical science (London, England : 1979)‎
  • 2016‎

Renal tubule cells can recover after they undergo AKI (acute kidney injury). An incomplete repair of renal tubules can result in progressive fibrotic CKD (chronic kidney disease). Studies have revealed the relationship between tubular epithelial cells and kidney fibrogenesis. However, the underlying mechanism remains unclear. Hippo pathway components were evaluated in complete/incomplete repair of I/R (ischaemia/reperfusion) AKI rat models, HK-2 cells and AKI human renal biopsy samples. We found that the expression levels of the Hippo pathway components changed dynamically during kidney regeneration and fibrogenesis in rat models of I/R-induced AKI and human renal biopsy samples. The transcription cofactor YAP (Yes-associated protein) might be a key effector of renal regeneration and fibrogenesis. Our results showed further that YAP might elicit both beneficial and detrimental effects on I/R AKI. After I/R injury occurred, YAP could promote the repair of the injured epithelia. The constant YAP increase and activation might be related to interstitial fibrosis and abnormal renal tubule differentiation. These results indicate that the proper modulation of the Hippo pathway, specifically the transcription cofactor YAP, during repair might be a potent therapeutic target in AKI-CKD transition after I/R injury.


The Prognostic Role of SOCS3 and A20 in Human Cholangiocarcinoma.

  • Yimin Wang‎ et al.
  • PloS one‎
  • 2015‎

As an antagonist of the JAK/STAT pathway, suppressor of cytokine signaling 3 (SOCS3) plays an integral role in shaping the inflammatory environment, tumorigenesis and disease progression in cholangiocarcinoma (CCA); however, its prognostic significance remains unclear. Although tumor necrosis factor α-induced protein 3 (TNFAIP3, also known as A20) can decrease SOCS3 expression and is involved in the regulation of tumorigenesis in certain malignancies, its role in CCA remains unknown. In this study, we investigated the expression of SOCS3 and A20 in human CCA tissues to assess the prognostic significance of these proteins. The expression of SOCS3 and A20 was initially detected by western blot in 22 cases of freshly frozen CCA tumors with corresponding peritumoral tissues and 22 control normal bile duct tissues. Then, these proteins were investigated in 86 CCA patients by immunohistochemistry (IHC) and were evaluated for their association with clinicopathological parameters in human CCA. The results indicated that SOCS3 expression was significantly lower in CCA tumor tissues than in corresponding peritumoral biliary tissues and normal bile duct tissues. Conversely, A20 was overexpressed in CCA tissues. Thus, an inverse correlation between the expression of SOCS3 and A20 was discovered. Furthermore, patients with low SOCS3 expression or high A20 expression showed a dramatically lower overall survival rate. These proteins were both associated with CCA lymph node metastasis, postoperative recurrence and overall survival rate. However, only A20 showed a significant association with the tumor node metastasis (TNM) stage, while SOCS3 showed a significant association with tumor differentiation. Multivariate Cox analysis revealed that SOCS3 and A20 were independent prognostic indicators for overall survival in CCA. Thus, our study demonstrated that SOCS3 and A20 represent novel prognostic factors for human CCA.


Design of Crystalline Reduction-Oxidation Cluster-Based Catalysts for Artificial Photosynthesis.

  • Xiao-Xin Li‎ et al.
  • JACS Au‎
  • 2021‎

Metal cluster-based compounds have difficulty finishing the photocatalytic carbon dioxide reduction reaction (CO2RR) and water oxidation reaction (WOR) simultaneously because of the big challenge in realizing the coexistence of independently and synergistically reductive and oxidative active sites in one compound. Herein, we elaborately designed and synthesized one kind of crystalline reduction-oxidation (RO) cluster-based catalysts connecting reductive {M 3 L 8 (H 2 O) 2 } (M = Zn, Co, and Ni for RO-1, 2, 3 respectively) cluster and oxidative {PMo9V7O44} cluster through a single oxygen atom bridge to achieve artificial photosynthesis successfully. These clusters can all photocatalyze CO2-to-CO and H2O-to-O2 reactions simultaneously, of which the CO yield of RO-1 is 13.8 μmol/g·h, and the selectivity is nearly 100%. Density functional theory calculations reveal that the concomitantly catalytically reductive and oxidative active sites (for CO2RR and WOR, respectively) and the effective electron transfer between the sites in these RO photocatalysts are the key factors to complete the overall photosynthesis.


Decitabine combined with RDHAP regimen in relapsed/refractory diffuse large B cell lymphoma.

  • Xiaoshuang Kong‎ et al.
  • Cancer medicine‎
  • 2023‎

There is an urgent need for effective treatment of patients with relapsed/refractory diffuse large B-cell lymphoma (R/R-DLBCL). This trial investigated the efficacy of decitabine in combination with rituximab, cisplatin, cytarabine, dexamethasone (RDHAP) in R/R-DLBCL.


The SPB-Box Transcription Factor AaSPL2 Positively Regulates Artemisinin Biosynthesis in Artemisia annua L.

  • Zongyou Lv‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Artemisinin, an important compound produced by Artemisia annua, is the active ingredient in the treatment of malaria. Jasmonic acid, one of the phytohormones, is an important elicitor of artemisinin biosynthesis by enhancing transcription levels of transcription factors. SPL transcription factors are plant-specific transcription factors of plant growth, development, and secondary metabolism regulation. However, to date, the SPL transcription factors that regulate artemisinin biosynthesis is currently unclear. Here, we show that an SPL transcription factor can positively regulate artemisinin biosynthesis by binding to the promoter of artemisinin biosynthetic pathway genes. We screened AaSPL2 by gene expression profiles analysis in 14 SPL transcription factors. We demonstrated that AaSPL2 can activate the promoter of DBR2 by dual-LUC assy. Moreover, in the AaSPL2 overexpression plants, the artemisinin content was increased by 33-86%, and in the AaSPL2 -RNAi transgenic plants, artemisinin content was decreased by 33-65%. These data suggest that AaSPL2 and DBR2 interact with a "GTAC" cis-element in the DBR2 promoter, mediating the transcriptional activation of DBR2 in response to JA and resulting in the improvement on artemisinin content.


Biogeographic Pattern and Network of Rhizosphere Fungal and Bacterial Communities in Panicum miliaceum Fields: Roles of Abundant and Rare Taxa.

  • Lixin Tian‎ et al.
  • Microorganisms‎
  • 2023‎

Unraveling how microbial interactions and assembly process regulate the rhizosphere abundant and rare taxa is crucial for determining how species diversity affects rhizosphere microbiological functions. We assessed the rare and abundant taxa of rhizosphere fungal and bacterial communities in proso millet agroecosystems to explore their biogeographic patterns and co-occurrence patterns based on a regional scale. The taxonomic composition was significantly distinct between the fungal and bacterial abundant and rare taxa. Additionally, the rare taxa of bacteria and fungi exhibited higher diversity and stronger phylogenetic clustering than those of the abundant ones. The phylogenetic turnover rate of abundant taxa of bacteria was smaller than that of rare ones, whereas that of fungi had the opposite trend. Environmental variables, particularly mean annual temperature (MAT) and soil pH, were the crucial factors of community structure in the rare and abundant taxa. Furthermore, a deterministic process was relatively more important in governing the assembly of abundant and rare taxa. Our network analysis suggested that rare taxa of fungi and bacteria were located at the core of maintaining ecosystem functions. Interestingly, MAT and pH were also the important drivers controlling the main modules of abundant and rare taxa. Altogether, these observations revealed that rare and abundant taxa of fungal and bacterial communities showed obvious differences in biogeographic distribution, which were based on the dynamic interactions between assembly processes and co-occurrence networks.


AKG Attenuates Cerebral Ischemia-Reperfusion Injury through c-Fos/IL-10/Stat3 Signaling Pathway.

  • Weilong Hua‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Inflammation is dominant in the pathogenesis of ischemic stroke (IS). Alpha-ketoglutarate (AKG), according to previous studies, has demonstrated a variety of pharmacological effects such as antioxidation and inhibitive inflammation activities. However, whether AKG ameliorates cerebral ischemic injury, as well as the underlying molecular events, is still unclear. Therefore, the effect and underlying mechanisms of AKG on ischemic brain injury should be identified. The study established a cerebral ischemia-reperfusion (I/R) model in mice as well as an oxygen-glucose deprivation/reperfusion (OGD/R) model in SH-SY5Y cells, respectively. It was observed that AKG markedly suppressed infarction volume and neuronal injuries and improved the neurological score in vivo. Moreover, AKG reduced the inflammatory response and lowered the expression of proinflammatory cytokines. In vitro, AKG treatment strongly inhibited OGD/R-induced neuronal injury and the proinflammatory factors. It was also found that the increased SOD and GSH levels, as well as the lower ROS levels, showed that AKG reduced oxidative stress in OGD/R-treated SY-SY5Y cells. Mechanistically, AKG largely promoted IL-10 expression in ischemic brain injury and OGD/R-induced neuronal injury. Furthermore, IL-10 silencing neutralized the protective effect of AKG on inflammation. Notably, it was discovered that AKG could upregulate IL-10 expression by promoting the translocation of c-Fos from the cytoplasm to the nucleus. The results indicated that AKG demonstrated neuroprotection on cerebral ischemia while inhibiting inflammation through c-Fos/IL-10/stat3 pathway.


Hypertension among Mississippi Workers by Sociodemographic Characteristics and Occupation, Behavioral Risk Factor Surveillance System.

  • Vincent L Mendy‎ et al.
  • International journal of hypertension‎
  • 2020‎

In 2017, Mississippi had the third highest age-adjusted prevalence of hypertension in the United States. We estimated the prevalence of hypertension by sociodemographic characteristics and occupation and examined the association between hypertension with occupation and sociodemographic characteristics among Mississippi workers. We calculated adjusted prevalence and adjusted prevalence ratios (APRs) by sociodemographic characteristics and occupation among Mississippi adult workers. We analyzed combined 2013, 2015, and 2017 data from the Mississippi Behavioral Risk Factor Surveillance System for 6,965 workers in ten Standard Occupational Classification System major groups. Of the estimated 1.1 million Mississippi workers during the three survey years, 31.4% (95% confidence interval (CI), 30.0-32.8) had hypertension. The likelihood of having hypertension was significantly higher among workers aged 30-44 years, 45-64 years, blacks, and those classified as overweight and obese workers compared to their counterparts. The likelihood of having hypertension among workers in the fields of installation, repair and maintenance, and production were 26% higher (APR, 1.26; 95% CI, 1.03-1.55) and 33% higher (APR, 1.33; 95% CI, 1.11-1.58), respectively, than workers in all other occupational groups. Among Mississippi workers, hypertension prevalence varied by sociodemographic characteristics and occupational groups. Age, race, obesity status, installation, repair, maintenance, and production occupation groups are associated with an increased likelihood of hypertension. Novel and/or community-based or linked programs are needed that could target workers at risk of hypertension that are outside of a single-site workplace.


MTHFR 677TT is associated with decreased number of embryos and cumulative live birth rate in patients undergoing GnRHa short protocol: a retrospective study.

  • Hong Zeng‎ et al.
  • BMC pregnancy and childbirth‎
  • 2022‎

Whether MTHFR C677T genotype affects pregnancy outcomes following assisted reproductive technology is conflicting. And the role of MTHFR C677T genotype on cumulative live birth has not been reported. This study aims to investigate the effect of MTHFR C677T genotype on cumulative live birth following in-vitro fertilization and embryo transfer (IVF-ET).


Derivation and External Validation of a Risk Prediction Model for Pulmonary Embolism in Patients With Lung Cancer: A Large Retrospective Cohort Study.

  • Ning Zhu‎ et al.
  • Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis‎
  • 2023‎

To investigate the risk factors of pulmonary embolism in patients with lung cancer and develop and validate a novel nomogram scoring system-based prediction model.


Low- and middle-income countries demonstrate rapid growth of type 2 diabetes: an analysis based on Global Burden of Disease 1990-2019 data.

  • Jinli Liu‎ et al.
  • Diabetologia‎
  • 2022‎

The study aims to quantify the global trend of the disease burden of type 2 diabetes caused by various risks factors by country income tiers.


Generation of human embryonic stem cell models to exploit the EWSR1-CREB fusion promiscuity as a common pathway of transformation in human tumors.

  • Fabio Vanoli‎ et al.
  • Oncogene‎
  • 2021‎

Chromosomal translocations constitute driver mutations in solid tumors and leukemias. The mechanisms of how related or even identical gene fusions drive the pathogenesis of various tumor types remain elusive. One remarkable example is the presence of EWSR1 fusions with CREB1 and ATF1, members of the CREB family of transcription factors, in a variety of sarcomas, carcinomas and mesotheliomas. To address this, we have developed in vitro models of oncogenic fusions, in particular, EWSR1-CREB1 and EWSR1-ATF1, in human embryonic stem (hES) cells, which are capable of multipotent differentiation, using CRISPR-Cas9 technology and HDR together with conditional fusion gene expression that allows investigation into the early steps of cellular transformation. We show that expression of EWSR1-CREB1/ATF1 fusion in hES cells recapitulates the core gene signatures, respectively, of angiomatoid fibrous histiocytoma (AFH) and gastrointestinal clear cell sarcoma (GI-CCS), although both fusions lead to cell lethality. Conversely, expression of the fusions in hES cells differentiated to mesenchymal progenitors is compatible with prolonged viability while maintaining the core gene signatures. Moreover, in the context of a mesenchymal lineage, the proliferation of cells expressing the EWSR1-CREB1 fusion is further extended by deletion of the tumor suppressor TP53. We expect the generation of isogenic lines carrying oncogenic fusions in various cell lineages to expand our general understanding of how those single genetic events drive tumorigenesis while providing valuable resources for drug discovery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: