2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Immunomodulatory Response Triggered by the Alkaloids, 3-Amino-7-Benzylbenzimidazo[3,2-a] Quinolinium Chloride (ABQ-48) and 3-Nitro-7-Benzylbenzimidazo [3,2-a] Quinolinium Chloride (NBQ-48).

  • Miguel Otero‎ et al.
  • Journal of cancer research and therapeutic oncology‎
  • 2015‎

ABQ-48 (3-amino-7-benzylbenzimidazo[3,2-a]quinolinium chloride) and NBQ-48 (3-nitro-7-benzylbenzimidaw[3,2-a] quinolinium chloride) are un-natural alkaloids containing a planar heteroaromatic systems characterized by quaternized nitrogen fused to benzothiazole nucleus. Both compounds are structurally related to naturally occurring substances such as elliptine (from Ochrosia), and berberine (from Berberis). Previous in vitro studies have shown these agents to control tumor-cell proliferation indicating that both BQS are active but especially ABQ-48 at a 1 OuM dose with over 80% control of the proliferation of multiple cancer cell lines from various etiologies including colon, melanoma, CNS and ovarian cells. Mechanism of action studies have also been conducted however this is the first approach to evaluate immune modulatory activity of these novel BQS. Immune-based therapy is an increasing field in which scientists identify how the immunomodulatory activity of known and newly discovered compounds elicits an immune response that could be used against diseases. In this study, our main objective was to apply an in vitro model to show the immunomodulatory effects of ABQ-48 and NBQ-48 by analyzing the cytokine profile resulting after extracted murine spleen cells were treated with both BQS using a fluorescence-based multiplex ELISA approach. Screened cytokines included: G-CSF, GM-CSF, IL-1a, IL-2, IL-3, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-15, IL-17, IL-21, IL-23, IFN-γ, and TNF-α. Our study results show ABQ 48 and NBQ-48 to stimulate the release of G-CSF, IL-2, IL-6, and, IFN-γ when mouse splenocytes are incubated with serial dilutions of these agents. Our finding opens new possibilities of potentially using ABQ-48 and NBQ-48 as immunomodulatory agents; with intend to activate the immune system such as the production of neutrophils against cancer or reducing chemotherapy side effects.


Novel Nitrobenzazolo[3,2-a]quinolinium Salts Induce Cell Death through a Mechanism Involving DNA Damage, Cell Cycle Changes, and Mitochondrial Permeabilization.

  • Christian Vélez‎ et al.
  • Open journal of apoptosis‎
  • 2013‎

This study reports the capacity of three nitro substituted benzazolo[3,2-a]quinolinium salts NBQs: NBQ 95 (NSC-763304), NBQ 38 (NSC 763305), and NBQ 97 (NSC-763306) as potential antitumor agents. NBQ's are unnatural alkaloids possessing a positive charge that could facilitate interaction with cell organelles. The anticancer activities of these compounds were evaluated through the National Cancer Institute (NCI) 60 cell line screening which represents diverse histologies. The screening was performed at 10 µM on all cell lines. Results from the NCI screening indicated cytotoxicity activity on six cell lines. In order to explore a possible mechanism of action, a detailed biological activity study of NBQ 95 and NBQ 38 was performed on A431 human epidermoid carcinoma cells to determine an apoptotic pathway involving, cell cycle changes, DNA fragmentation, mutations, mitochondrial membrane permeabilization and caspases activation. DNA fragmentation, cell cycle effects, mutagenesis, mitochondrial permeabilization and activation of caspases were determined by fluorimetry and differential imaging. Our data showed that A431 growth was inhibited with an average IC50 of 30 µM. In terms of the mechanism, these compounds interacted with DNA causing fragmentation and cell cycle arrest at sub G0/G1 stage. Mutagenesis was higher for NBQ 38 and moderate for NBQ 95 Mitochon-drial permeabilization was observed with NBQ 38 and slightly for NBQ 95. Both compounds caused activation of Caspases 3 and 7 suggesting an apoptotic cell death pathway through an intrinsic mechanism. This study reports evidence of the toxicity of these novel compounds with overlapping structural and mechanistic similarities to ellipticine, a known anti-tumor compound.


Novel NBQ-48 as marker of hypoxic cells in 2D and 3D colon cancer cells.

  • Beatriz Zayas‎ et al.
  • Journal of cancer prevention & current research‎
  • 2020‎

This study presents the applicability of a novel nitro-substituted heterocyclic compound NBQ48, member of the family of compounds identified as 3 nitrobenzazolo[3, 2-a] quinolinium chloride salts (NBQS) as a screening tool to identify hypoxic tumor cells. The applicability was tested on COLO 205 colon cancer cells 2D and 3D cultures treated with NBQ48 to assess the formation of a bio-reduction fluorescent metabolite under hypoxic conditions in contrast, to those under aerobic environment. Hypoxic environment was created applying a controlled hypoxic gas chamber. Prior to testing the applicability of NBQ48 as a hypoxic fluorescent marker, cytotoxic studies where performed to identify a low-toxicity dose at 24 hours under aerobic and hypoxic environments that would allow the bio-reduction process with little toxicity. The differences in fluorescence emission after treatment was measured by fluorometer and fluorescence microscopy. Results indicated that cell treatments up to 24 hours with NBQ48 under aerobic environment did not reach an IC50 dose in COLO205 cells, however under hypoxic environment the IC50 reached at 100μM. The significant fluorescence increment after 24 and 48 hrs in 2D and 3D cultures treated with NBQ48 (75uM) at hypoxic in contrast to aerobic environments clearly demonstrated the need of a low oxygen content for the bio-reduction of the parent NBQ48. This study confirms the applicability of NBQ48 as markers for hypoxia in metabolically active 2D and 3D cultures. This hydrophilic hypoxic marker could additionally aid researchers in testing hypoxia activated pro-drugs for therapeutic applications in cancer as well as on other diseases where cellular hypoxia is a significant risk factor.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: