Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

The Effect of Chemical Structure of OEG Ligand Shells with Quaternary Ammonium Moiety on the Colloidal Stabilization, Cellular Uptake and Photothermal Stability of Gold Nanorods.

  • Sarka Salajkova‎ et al.
  • International journal of nanomedicine‎
  • 2021‎

Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as a promising tool for cancer treatment. The goal of this study was to design cationic oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electrostatic potential as ligand shells of GNRs. Three series of ligands with different length of OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts (QAS) as terminal functional group were synthesized and compared to a prototypical quaternary ammonium ligand with alkyl chain - (16-mercaptohexadecyl)trimethylammonium bromide (MTAB).


The wide-spectrum antimicrobial effect of novel N-alkyl monoquaternary ammonium salts and their mixtures; the QSAR study against bacteria.

  • Ondrej Soukup‎ et al.
  • European journal of medicinal chemistry‎
  • 2020‎

Quaternary ammonium salts (QASs) have been widely used for disinfection purposes because of their low price, high efficacy and low human toxicity for decades. However, precise mechanisms of action nor the powerful versatile agent against all antimicrobial species are known. In this study we have prepared 43 novel N-alkyl monoquaternary ammonium salts including 7 N,N-dialkyl monoquaternary ammonium salts differing bearing alkyl chain either of 12, 14 or 16 carbons. Together with 15 already published QASs we have studied the antimicrobial efficacy of all water-soluble compounds together with standard benzalkonium salts against Gram-positive (G+) and Gram-negative (G-) bacteria, anaerobic spore-forming Cl. difficile, yeasts, filamentous fungi and enveloped Varicella zoster virus (VZV). To address the mechanism of action, lipophilicity seems to be a key parameter which determines antimicrobial efficacy, however, exceptions are likely to occur and therefore QSAR analysis on the efficacy against G+ and G- bacteria was applied. We showed that antibacterial activity is higher when the molecule is larger, more lipophilic, less polar, and contains fewer oxygen atoms, fewer methyl groups bound to heteroatoms or fewer hydrogen atoms bound to polarized carbon atoms. In addition, from an application point of view, we have formulated mixtures, on the basis of obtained efficiency of individual compounds, in order to receive wide-spectrum agent. All formulated mixtures completely eradicated tested G+ and G- strains, including the multidrug-resistant P. aeruginosa as well as in case of yeasts. However, effect on A. fumigatus, Cl. difficile and VZV the exposition towards mixture resulted in significant reduction only. Finally, 3 out of 4 formulated mixtures were safer than reference commercial agent based on benzalkonium salts only in the skin irritation test using reconstructed human epidermidis.


Synthesis and Decontamination Effect on Chemical and Biological Agents of Benzoxonium-Like Salts.

  • Aneta Markova‎ et al.
  • Toxics‎
  • 2021‎

Benzoxonium chloride belongs to the group of quaternary ammonium salts, which have been widely used for decades as disinfectants because of their high efficacy, low toxicity, and thermal stability. In this study, we have prepared the C10-C18 set of benzoxonium-like salts to evaluate the effect of their chemical and biological decontamination capabilities. In particular, biocidal activity against a panel of bacterial strains including Staphylococcus aureus in biofilm form was screened. In addition, the most promising compounds were successfully tested against Francisella tularensis as a representative of potential biological warfare agents. From a point of view of chemical warfare protection, the efficiency of BOC-like compounds to degrade the organophosphate simulant fenitrothion was examined. Notwithstanding that no single compound with universal effectiveness was identified, a mixture of only two compounds from this group would be able to satisfactorily cover the proposed decontamination spectrum. In addition, the compounds were evaluated for their cytotoxicity as a basic safety parameter for potential use in practice. In summary, the dual effect on chemical and biological agents of benzoxonium-like salts offer attractive potential as active components of decontamination mixtures in the case of a terrorist threat or chemical or biological accidents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: