Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Soil water solutes reduce the critical micelle concentration of quaternary ammonium compounds.

  • Ines Mulder‎ et al.
  • Environmental science and pollution research international‎
  • 2020‎

Quaternary alkyl ammonium compounds (QAACs) are produced in large quantities for use as surfactants and disinfectants and also found in soils, sediments, and surface waters, where they are potentially involved in the selection of antibiotic resistance genes. Micelle formation influences fate and effects of QAACs. The critical micelle concentration (CMC) of six homologs of benzylalkylammonium chlorides (BAC) was determined in deionized water, 0.01 M CaCl2 solution, and aqueous soil extracts, using both spectrofluorometric and tensiometric methods. Additionally, eight organic model compounds were employed at concentrations of 15 mg C L-1 as background solutes in order to test the effect of dissolved organic carbon (DOC) on CMCs. Results found CMCs decreased with an increasing length of the alkyl chain from 188 mM for BAC-C8 to 0.1 mM for BAC-C18. Both methods yielded similar results for measurements in water and CaCl2 solution; however, the spectrofluorescence method did not work for soil extracts due to fluorescence quenching phenomena. In soil extracts, CMCs of BAC-C12 were reduced below 3.7 mM, while the CMC reduction in soil extracts was less pronounced for BAC-C16. Besides ionic strength, molecular structures of BACs and dissolved organic compounds also affected the CMC. The number of carboxyl groups and small molecular weights of the DOC model compounds reduced the CMCs of BAC-C12 and BAC-C16 at pH 6. This study highlights that CMCs can be surpassed in soil solution, pore waters of sediments, or other natural waters even at (small) concentrations of QAACs typically found in the environment.


A fast and robust method for the extraction and analysis of quaternary alkyl ammonium compounds from soil and sewage sludge.

  • Benjamin Justus Heyde‎ et al.
  • PloS one‎
  • 2020‎

Alkyltrimethylammonium compounds (ATMACs), dialkyldimethylammonium compounds (DADMACs) and benzylalkyldimethylethylammonium compounds (BACs) are quaternary alkylammonium compounds (QAAC), which are released into the environment in large quantities after their use in cleaning agents and disinfectants. Despite their potential role as selective agents promoting resistance against QAACs as well as antibiotics, there is a lack of data for QAACs in soil due to the lack of sensitive analytical methods. Therefore, we present a robust and fast method for the extraction and quantification of concentrations of these compounds in soil and sewage sludge. The method is based on ultrasonic extraction (USE) with a mixture of acetonitrile and HCl followed by a solid phase extraction (SPE) cleaning step and a subsequent quantification of concentrations with high performance liquid chromatography with mass spectrometry (HPLC-MS/MS) in multi mass reaction mode (MRM). The proposed method is suitable for the quantification of ATMACs (chain length C-8 to C-16), BACs (C-8 to C-18) and DADMACs (C-8 to C-16). The achieved limits of quantification (LOQ) range from 0.1 μg kg-1 to 2.1 μg kg-1. The recovery rates of spiked soil samples for non-deuterated homologues were between 47% and 57%. The analysis of sewage sludge samples and soil samples revealed that BAC-C12 was the most abundant QAAC with concentrations up to 38600 μg kg-1 in sewage sludge and up to 81 μg kg-1 in a Mexican soil that was irrigated with wastewater. Overall, the presented methods open perspectives for effectively studying fate and effects of QAACs in soils.


Biosolids for safe land application: does wastewater treatment plant size matters when considering antibiotics, pollutants, microbiome, mobile genetic elements and associated resistance genes?

  • Birgit Wolters‎ et al.
  • Environmental microbiology‎
  • 2022‎

Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing. Concentrations of heavy metals, antibiotics, the biocides triclosan, triclocarban and quaternary ammonium compounds (QACs) were measured. Strong and significant correlations were revealed between several target genes and concentrations of Cu, Zn, triclosan, several antibiotics and QACs. Interestingly, the size of the sewage treatment plant (inhabitant equivalents) was negatively correlated with antibiotic concentrations, RGs and MGEs abundances and had little influence on the load of metals and QACs or the microbial community composition. Biosolids from WWTPs with anaerobic treatment and hospitals in their catchment area were associated with a higher abundance of potential opportunistic pathogens and higher concentrations of QACs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: