2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 220 papers

Spatiotemporal Intermittency in Pulsatile Pipe Flow.

  • Daniel Feldmann‎ et al.
  • Entropy (Basel, Switzerland)‎
  • 2020‎

Despite its importance in cardiovascular diseases and engineering applications, turbulence in pulsatile pipe flow remains little comprehended. Important advances have been made in the recent years in understanding the transition to turbulence in such flows, but the question remains of how turbulence behaves once triggered. In this paper, we explore the spatiotemporal intermittency of turbulence in pulsatile pipe flows at fixed Reynolds and Womersley numbers (Re=2400, Wo=8) and different pulsation amplitudes. Direct numerical simulations (DNS) were performed according to two strategies. First, we performed DNS starting from a statistically steady pipe flow. Second, we performed DNS starting from the laminar Sexl-Womersley flow and disturbed with the optimal helical perturbation according to a non-modal stability analysis. Our results show that the optimal perturbation is unable to sustain turbulence after the first pulsation period. Spatiotemporally intermittent turbulence only survives for multiple periods if puffs are triggered. We find that puffs in pulsatile pipe flow do not only take advantage of the self-sustaining lift-up mechanism, but also of the intermittent stability of the mean velocity profile.


Chest-MRI under pulsatile flow ventilation: A new promising technique.

  • Catherine Beigelman-Aubry‎ et al.
  • PloS one‎
  • 2017‎

Magnetic resonance imaging (MRI) of the chest has long suffered from its sensitivity to respiratory and cardiac motion with an intrinsically low signal to noise ratio and a limited spatial resolution. The purpose of this study was to perform chest MRI under an adapted non invasive pulsatile flow ventilation system (high frequency percussive ventilation, HFPV®) allowing breath hold durations 10 to 15 times longer than other existing systems.


Variations in pulsatile flow around stenosed microchannel depending on viscosity.

  • Hyeonji Hong‎ et al.
  • PloS one‎
  • 2019‎

In studying blood flow in the vessels, the characteristics of non-Newtonian fluid are important, considering the role of viscosity in rheology. Stenosis, which is an abnormal narrowing of the vessel, has an influence on flow behavior. Therefore, analysis of blood flow in stenosed vessels is essential. However, most of them exist as simulation outcomes. In this study, non-Newtonian fluid was observed in stenosed microchannels under the pulsatile flow condition. A polydimethylsiloxane channel with 60% stenosis was fabricated by combining an optic fiber and a petri dish, resembling a mold. Three types of samples were prepared by changing the concentrations of xanthan gum, which induces a shear thinning effect (phosphate buffered saline (PBS) solution as the Newtonian fluid and two non-Newtonian fluids mimicking normal blood and highly viscous blood analog). The viscosity of the samples was measured using a Y-shaped microfluidic viscometer. Thereafter, velocity profiles were analyzed under the pulsatile flow condition using the micro-particle image velocimetry (PIV) method. For the Newtonian fluid, the streamline was skewed more to the wall of the channel. The velocity profile of the non-Newtonian fluid was generally blunter than that of the Newtonian fluid. A highly oscillating wall shear stress (WSS) during the pulsatile phase may be attributed to such a bluntness of flow under the same wall shear rate condition with the Newtonian fluid. In addition, a highly viscous flow contributes to the variation in the WSS after passing through the stenosed structures. A similar tendency was observed in simulation results. Such a variation in the WSS was associated with plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.


Biocompatibility of the Oxygenator on Pulsatile Flow by Electron Microscope.

  • Ahmet Tulga Ulus‎ et al.
  • Brazilian journal of cardiovascular surgery‎
  • 2023‎

Extracorporeal perfusion flow type requires further investigation. The aim of this study is to compare the effects of pulsatile and nonpulsatile flow on oxygenator fibers that were analyzed by scanning electron microscope (SEM) and to extensively study patients' coagulation profiles, inflammatory markers, and functional blood tests.


Degeneration of Aortic Valves in a Bioreactor System with Pulsatile Flow.

  • Naima Niazy‎ et al.
  • Biomedicines‎
  • 2021‎

Calcific aortic valve disease is the most common valvular heart disease in industrialized countries. Pulsatile pressure, sheer and bending stress promote initiation and progression of aortic valve degeneration. The aim of this work is to establish an ex vivo model to study the therein involved processes. Ovine aortic roots bearing aortic valve leaflets were cultivated in an elaborated bioreactor system with pulsatile flow, physiological temperature, and controlled pressure and pH values. Standard and pro-degenerative treatment were studied regarding the impact on morphology, calcification, and gene expression. In particular, differentiation, matrix remodeling, and degeneration were also compared to a static cultivation model. Bioreactor cultivation led to shrinking and thickening of the valve leaflets compared to native leaflets while gross morphology and the presence of valvular interstitial cells were preserved. Degenerative conditions induced considerable leaflet calcification. In comparison to static cultivation, collagen gene expression was stable under bioreactor cultivation, whereas expression of hypoxia-related markers was increased. Osteopontin gene expression was differentially altered compared to protein expression, indicating an enhanced protein turnover. The present ex vivo model is an adequate and effective system to analyze aortic valve degeneration under controlled physiological conditions without the need of additional growth factors.


Numerical simulation of spatiotemporal red blood cell aggregation under sinusoidal pulsatile flow.

  • Cheong-Ah Lee‎ et al.
  • Scientific reports‎
  • 2021‎

Previous studies on red blood cell (RBC) aggregation have elucidated the inverse relationship between shear rate and RBC aggregation under Poiseuille flow. However, the local parabolic rouleaux pattern in the arterial flow observed in ultrasonic imaging cannot be explained by shear rate alone. A quantitative approach is required to analyze the spatiotemporal variation in arterial pulsatile flow and the resulting RBC aggregation. In this work, a 2D RBC model was used to simulate RBC motion driven by interactional and hydrodynamic forces based on the depletion theory of the RBC mechanism. We focused on the interaction between the spatial distribution of shear rate and the dynamic motion of RBC aggregation under sinusoidal pulsatile flow. We introduced two components of shear rate, namely, the radial and axial shear rates, to understand the effect of sinusoidal pulsatile flow on RBC aggregation. The simulation results demonstrated that specific ranges of the axial shear rate and its ratio with radial shear rate strongly affected local RBC aggregation and parabolic rouleaux formation. These findings are important, as they indicate that the spatiotemporal variation in shear rate has a crucial role in the aggregate formation and local parabolic rouleaux under pulsatile flow.


The Effect of Arterial Curvature on Blood Flow in Arterio-Venous Fistulae: Realistic Geometries and Pulsatile Flow.

  • L Grechy‎ et al.
  • Cardiovascular engineering and technology‎
  • 2017‎

Arterio-Venous Fistulae (AVF) are regarded as the "gold standard" method of vascular access for patients with End-Stage Renal Disease (ESRD) who require haemodialysis. However, up to 60% of AVF do not mature, and hence fail, as a result of Intimal Hyperplasia (IH). Unphysiological flow and oxygen transport patterns, associated with the unnatural and often complex geometries of AVF, are believed to be implicated in the development of IH. Previous studies have investigated the effect of arterial curvature on blood flow in AVF using idealized planar AVF configurations and non-pulsatile inflow conditions. The present study takes an important step forwards by extending this work to more realistic non-planar brachiocephalic AVF configurations with pulsatile inflow conditions. Results show that forming an AVF by connecting a vein onto the outer curvature of an arterial bend does not, necessarily, suppress unsteady flow in the artery. This finding is converse to results from a previous more idealized study. However, results also show that forming an AVF by connecting a vein onto the inner curvature of an arterial bend can suppress exposure to regions of low wall shear stress and hypoxia in the artery. This finding is in agreement with results from a previous more idealized study. Finally, results show that forming an AVF by connecting a vein onto the inner curvature of an arterial bend can significantly reduce exposure to high WSS in the vein. The results are important, as they demonstrate that in realistic scenarios arterial curvature can be leveraged to reduce exposure to excessively low/high levels of WSS and regions of hypoxia in AVF. This may in turn reduce rates of IH and hence AVF failure.


A Pulsatile Flow System to Engineer Aneurysm and Atherosclerosis Mimetic Extracellular Matrix.

  • Vahid Hosseini‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2020‎

Alterations of blood flow patterns strongly correlate with arterial wall diseases such as atherosclerosis and aneurysm. Here, a simple, pumpless, close-loop, easy-to-replicate, and miniaturized flow device is introduced to concurrently expose 3D engineered vascular smooth muscle tissues to high-velocity pulsatile flow versus low-velocity disturbed flow conditions. Two flow regimes are distinguished, one that promotes elastin and impairs collagen I assembly, while the other impairs elastin and promotes collagen assembly. This latter extracellular matrix (ECM) composition shares characteristics with aneurysmal or atherosclerotic tissue phenotypes, thus recapitulating crucial hallmarks of flow-induced tissue morphogenesis in vessel walls. It is shown that the mRNA levels of ECM of collagens and elastin are not affected by the differential flow conditions. Instead, the differential gene expression of matrix metalloproteinase (MMP) and their inhibitors (TIMPs) is flow-dependent, and thus drives the alterations in ECM composition. In further support, treatment with doxycycline, an MMP inhibitor and a clinically used drug to treat vascular diseases, halts the effect of low-velocity flow on the ECM remodeling. This illustrates how the platform can be exploited for drug efficacy studies by providing crucial mechanistic insights into how different therapeutic interventions may affect tissue growth and ECM assembly.


Pulsatile reperfusion: the effects on coronary blood flow and myocardial ischemic injury.

  • K M Taylor‎
  • The Journal of thoracic and cardiovascular surgery‎
  • 1983‎

No abstract available


Stem Cell Cytoskeletal Responses to Pulsatile Flow in Heart Valve Tissue Engineering Studies.

  • Glenda Castellanos‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2018‎

Heart valve replacement options remain exceedingly limited for pediatric patients because they cannot accommodate somatic growth. To overcome this shortcoming, heart valve tissue engineering using human bone marrow stem cells (HBMSCs) has been considered a potential solution to the treatment of critical congenital valvular defects. The mechanical environments during in vitro culture are key regulators of progenitor cell fate. Here, we report on alterations in HBMSCs, specifically in their actin cytoskeleton and their nucleus under fluid-induced shear stresses of relevance to heart valves. HBMSCs were seeded in microfluidic channels and were exposed to the following conditions: pulsatile shear stress (PSS), steady shear stress (SS), and no flow controls (n = 4/group). Changes to the actin filament structure were monitored and subsequent gene expression was evaluated. A significant increase (p < 0.05) in the number of actin filaments, filament density and angle (between 30° and 84°), and conversely a significant decrease (p < 0.05) in the length of the filaments were observed when the HBMSCs were exposed to PSS for 48 h compared to SS and no flow conditions. No significant differences in nuclear shape were observed among the groups (p > 0.05). Of particular relevance to valvulogenesis, klf2a, a critical gene in valve development, was significantly expressed only by the PSS group (p < 0.05). We conclude that HBMSCs respond to PSS by alterations to their actin filament structure that are distinct from SS and no flow conditions. These changes coupled with the subsequent gene expression findings suggest that at the cellular level, the immediate effect of PSS is to initiate a unique set of quantifiable cytoskeletal events (increased actin filament number, density and angle, but decrease in filament length) in stem cells, which could be useful in the fine-tuning of in vitro protocols in heart valve tissue engineering.


Pulsatile Flow-Induced Fatigue-Resistant Photopolymerizable Hydrogels for the Treatment of Intracranial Aneurysms.

  • Oriane Poupart‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

An alternative intracranial aneurysm embolic agent is emerging in the form of hydrogels due to their ability to be injected in liquid phase and solidify in situ. Hydrogels have the ability to fill an aneurysm sac more completely compared to solid implants such as those used in coil embolization. Recently, the feasibility to implement photopolymerizable poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels in vitro has been demonstrated for aneurysm application. Nonetheless, the physical and mechanical properties of such hydrogels require further characterization to evaluate their long-term integrity and stability to avoid implant compaction and aneurysm recurrence over time. To that end, molecular weight and polymer content of the hydrogels were tuned to match the elastic modulus and compliance of aneurysmal tissue while minimizing the swelling volume and pressure. The hydrogel precursor was injected and photopolymerized in an in vitro aneurysm model, designed by casting polydimethylsiloxane (PDMS) around 3D printed water-soluble sacrificial molds. The hydrogels were then exposed to a fatigue test under physiological pulsatile flow, inducing a combination of circumferential and shear stresses. The hydrogels withstood 5.5 million cycles and no significant weight loss of the implant was observed nor did the polymerized hydrogel protrude or migrate into the parent artery. Slight surface erosion defects of 2-10 μm in depth were observed after loading compared to 2 μm maximum for non-loaded hydrogels. These results show that our fine-tuned photopolymerized hydrogel is expected to withstand the physiological conditions of an in vivo implant study.


Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

  • Hanwook Park‎ et al.
  • Scientific reports‎
  • 2015‎

Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.


Efficacy of Pulsatile Flow Perfusion in Adult Cardiac Surgery: Hemodynamic Energy and Vascular Reactivity.

  • Mikhail Dodonov‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Background: The role of pulsatile (PP) versus non-pulsatile (NP) flow during a cardiopulmonary bypass (CPB) is still debated. This study's aim was to analyze hemodynamic effects, endothelial reactivity and erythrocytes response during a CPB with PP or NP. Methods: Fifty-two patients undergoing an aortic valve replacement were prospectively randomized for surgery with either PP or NP flow. Pulsatility was evaluated in terms of energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE). Systemic (SVRi) and pulmonary (PVRi) vascular resistances, endothelial markers levels and erythrocyte nitric-oxide synthase (eNOS) activity were collected at different perioperative time-points. Results: In the PP group, the resultant EEP was 7.3% higher than the mean arterial pressure (MAP), which corresponded to 5150 ± 2291 ergs/cm3 of SHE. In the NP group, the EEP and MAP were equal; no SHE was produced. The PP group showed lower SVRi during clamp-time (p = 0.06) and lower PVRi after protamine administration and during first postoperative hours (p = 0.02). Lower SVRi required a higher dosage of norepinephrine in the PP group (p = 0.02). Erythrocyte eNOS activity results were higher in the PP patients (p = 0.04). Renal function was better preserved in the PP group (p = 0.001), whereas other perioperative variables were comparable between the groups. Conclusions: A PP flow during a CPB results in significantly lower SVRi, PVRi and increased eNOS production. The clinical impact of increased perioperative vasopressor requirements in the PP group deserves further evaluation.


Pulsatile flow and simple flow control method during weaning period in centrifugal pump: toward more expanded usage in open heart surgery.

  • H Nishida‎ et al.
  • Artificial organs‎
  • 1994‎

To expand the usage of the centrifugal pump (CP) in open heart surgery, we performed two studies. In the first, we evaluated pulsatile flow in the CP. In vitro pump performance of the Terumo Capiox pump (TCP) and the Sarns Delphin pump (SDP) and increase of free hemoglobin (mg/dl) after driving 6 h were investigated using bovine blood. A roller pump (RP) was used as a comparison. Equally effective pulsatile flow was obtained in both CPs. Hemolysis was less severe in TCP (120 mg/dl) than SDP (210 mg/dl) and RP (320 mg/dl). In the second study, we evaluated a simple flow control method. Flow rate was easily controlled with step-wise clamping of 3-pronged tubing (Triple-flow) without changing rotational speed, regardless of afterload. Fluctuation of flow was much less with this method than with the rotational speed change method. The use of pulsatile flow of TCP, with its minimum increase of hemolysis and the easier flow control method during the weaning process, may expand the usage of CP in open heart surgery.


Atheroprotective pulsatile flow induces ubiquitin-proteasome-mediated degradation of programmed cell death 4 in endothelial cells.

  • Cheng Ge‎ et al.
  • PloS one‎
  • 2014‎

We recently found low level of tumor suppressor programmed cell death 4 (PDCD4) associated with reduced atherosclerotic plaque area (unpublished). We investigated whether atheroprotective unidirectional pulsatile shear stress affects the expression of PDCD4 in endothelial cells.


Non-pulsatile blood flow is associated with enhanced cerebrovascular carbon dioxide reactivity and an attenuated relationship between cerebral blood flow and regional brain oxygenation.

  • Cecilia Maria Veraar‎ et al.
  • Critical care (London, England)‎
  • 2019‎

Systemic blood flow in patients on extracorporeal assist devices is frequently not or only minimally pulsatile. Loss of pulsatile brain perfusion, however, has been implicated in neurological complications. Furthermore, the adverse effects of absent pulsatility on the cerebral microcirculation are modulated similarly as CO2 vasoreactivity in resistance vessels. During support with an extracorporeal assist device swings in arterial carbon dioxide partial pressures (PaCO2) that determine cerebral oxygen delivery are not uncommon-especially when CO2 is eliminated by the respirator as well as via the gas exchanger of an extracorporeal membrane oxygenation machine. We, therefore, investigated whether non-pulsatile flow affects cerebrovascular CO2 reactivity (CVR) and regional brain oxygenation (rSO2).


Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure.

  • Obdulia Ley‎ et al.
  • Biomedical engineering online‎
  • 2007‎

This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture.


Can pulsatile CSF flow across the cerebral aqueduct cause ventriculomegaly? A prospective study of patients with communicating hydrocephalus.

  • P Holmlund‎ et al.
  • Fluids and barriers of the CNS‎
  • 2019‎

Communicating hydrocephalus is a disease where the cerebral ventricles are enlarged. It is characterized by the absence of detectable cerebrospinal fluid (CSF) outflow obstructions and often with increased CSF pulsatility measured in the cerebral aqueduct (CA). We hypothesize that the cardiac-related pulsatile flow over the CA, with fast systolic outflow and slow diastolic inflow, can generate net pressure effects that could source the ventriculomegaly in these patients. This would require a non-zero cardiac cycle averaged net pressure difference (ΔPnet) over the CA, with higher average pressure in the lateral and third ventricles.


Numerical study on the energy cascade of pulsatile Newtonian and power-law flow models in an ICA bifurcation.

  • Samar A Mahrous‎ et al.
  • PloS one‎
  • 2021‎

The complex physics and biology underlying intracranial hemodynamics are yet to be fully revealed. A fully resolved direct numerical simulation (DNS) study has been performed to identify the intrinsic flow dynamics in an idealized carotid bifurcation model. To shed the light on the significance of considering blood shear-thinning properties, the power-law model is compared to the commonly used Newtonian viscosity hypothesis. We scrutinize the kinetic energy cascade (KEC) rates in the Fourier domain and the vortex structure of both fluid models and examine the impact of the power-law viscosity model. The flow intrinsically contains coherent structures which has frequencies corresponding to the boundary frequency, which could be associated with the regulation of endothelial cells. From the proposed comparative study, it is found that KEC rates and the vortex-identification are significantly influenced by the shear-thinning blood properties. Conclusively, from the obtained results, it is found that neglecting the non-Newtonian behavior could lead to underestimation of the hemodynamic parameters at low Reynolds number and overestimation of the hemodynamic parameters by increasing the Reynolds number. In addition, we provide physical insight and discussion onto the hemodynamics associated with endothelial dysfunction which plays significant role in the pathogenesis of intracranial aneurysms.


Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT.

  • Woojhon Choi‎ et al.
  • Biomedical optics express‎
  • 2012‎

We present an approach to measure pulsatile total retinal arterial blood flow in humans and rats using ultrahigh speed Doppler OCT. The axial blood velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area, without the need to measure the Doppler angle. By measuring flow at the central retinal artery, the scan area can be very small. Combined with ultrahigh speed, this approach enables high volume acquisition rates necessary for pulsatile total flow measurement without modification in the OCT system optics. A spectral domain OCT system at 840nm with an axial scan rate of 244kHz was used for this study. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was ±37.7mm/s. By repeatedly scanning a small area centered at the central retinal artery with high volume acquisition rates, pulsatile flow characteristics, such as systolic, diastolic, and mean total flow values, were measured. Real-time Doppler C-scan preview is proposed as a guidance tool to enable quick and easy alignment necessary for large scale studies. Data processing for flow calculation can be entirely automatic using this approach because of the simple and robust algorithm. Due to the rapid volume acquisition rate and the fact that the measurement is independent of Doppler angle, this approach is inherently less sensitive to involuntary eye motion. This method should be useful for investigation of small animal models of ocular diseases as well as total blood flow measurements in human patients in the clinic.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: