Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 104 papers

TMT-Based Quantitative Proteomics Analysis Reveals Airborne PM2.5-Induced Pulmonary Fibrosis.

  • Shan Liu‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

Epidemiological and experimental studies have documented that long-term exposure to fine particulate matter (PM2.5) increases the risk of respiratory diseases. However, the details of the underlying mechanism remain unclear. In this study, male C57BL/6 mice were exposed to ambient PM2.5 (mean daily concentration ~64 µg/m³) for 12 weeks through a "real-world" airborne PM2.5 exposure system. We found that PM2.5 caused severe lung injury in mice as evidenced by histopathological examination. Then, tandem mass tag (TMT) labeling quantitative proteomic technology was performed to analyze protein expression profiling in the lungs from control and PM2.5-exposed mice. A total of 32 proteins were differentially expressed in PM2.5-exposed lungs versus the controls. Among these proteins, 24 and 8 proteins were up- and down-regulated, respectively. Gene ontology analysis indicated that PM2.5 exerts a toxic effect on lungs by affecting multiple biological processes, including oxidoreductase activity, receptor activity, and protein binding. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that extracellular matrix (ECM)⁻receptor interaction, phagosome, small cell lung cancer, and phosphatidylinositol 3-kinase(PI3K)-protein kinase B (Akt) signaling pathways contribute to PM2.5-induced pulmonary fibrosis. Taken together, these results provide a comprehensive proteomics analysis to further understanding of the molecular mechanisms underlying PM2.5-elicited pulmonary disease.


Identification of lysine acetylome of oral squamous cell carcinoma by label-free quantitative proteomics.

  • Jingjing Dong‎ et al.
  • Journal of proteomics‎
  • 2022‎

Lysine acetylation (Kac) on histone promotes relaxation of the chromatin conformation and favors gene transcription to regulate oncogenesis, whereas the total acetylation profiling of oral squamous cell carcinoma (OSCC) is unknown. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilised to investigate lysine acetylation features of tumor tissues and adjacent normal tissues from 9 patients with OCSS. 282 upregulated Kac sites in 234 proteins and 235 downregulated Kac sites in 162 proteins between OSCC tissues and paired adjacent normal tissues were identified. Different acetylation proteins (DAPs) were analyzed through KEGG-based and MCODE. These DAPs are enriched in the ribosome biogenesis pathway. Survival Analysis of hub genes with TCGA database was performed. In addition, IPA software was used to explore the connection between 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) and the different expression of KATs and KDACs identified in our proteomic. The study is the first comparative study of Kac modification on oral squamous cell carcinoma. We propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC. SIGNIFICANCE: The study is the first comparative study of Kac modification on oral squamous cell carcinoma through LC-MS/MS-based modified proteomic. These DAPs are high enriched in the ribosome biogenesis pathway. Used MCODE and survival analysis, 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) were screened. IPA software was used to explore the connection between 9 core DAPs and the different expression of KATs and KDACs identified in our proteomic. In addition, we propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC.


Comparative proteomics and phosphoproteomics analyses of DHEA-induced on hepatic lipid metabolism in broiler chickens.

  • Jianzhen Huang‎ et al.
  • Steroids‎
  • 2011‎

Dehydroepiandrosterone (DHEA) is a precursor of the adrenocorticosteroid hormones that are common to all animals, including poultry. The study described herein was undertaken to investigate the effect of DHEA on lipid metabolism in broiler chickens during embryonic development and to determine the regulatory mechanisms involved in its physiological action. Treatment group eggs were injected with 50mg DHEA diluted in 50 μL dimethyl sulfoxide (DMSO) per kg, while control group eggs (arbor acres [AA] fertilized) were injected with 50 μL DMSO per kg prior to incubation. Liver samples were collected on days 9, 14 and 19 of embryonic development as well as at hatching. Extracted proteins were analyzed by two dimensional gel electrophoresis (2-DE) in combination with western blotting for specific anti-phosphotyrosine. The differential spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) or MALDI-TOF-TOF-MS. Peptide mass fingerprinting (PMF) of the differentially-expressed proteins were performed using the MASCOT, Prospector or proFound server. Thirty-seven proteins and twenty-two tyrosine phosphorylation proteins were successfully identified. All 37 proteins and 22 tyrosine phosphorylation proteins exhibited a significant volume difference from the control group. These results demonstrated that DHEA increased the expression and level of tyrosine phosphorylation and sulfotransferase proteins in broilers (at pI 5.9), therefore promoting the biotransformation of DHEA. The expression of apolipoproteinA-I was increased in the DHEA treatment group, which facilitated the conversion of cholesterol to cholesterol esters. Also, DHEA increased the expression of peroxiredoxin-6 and its tyrosine phosphorylation protein levels, thus enhancing its anti-oxidative activity. Furthermore, pyruvate dehydrogenase expression was decreased and the level of its tyrosine phosphorylation proteins increased in the DHEA treatment group. Take together, those data indicate that DHEA reduces the supply of acetyl-CoA by inhibiting the activity of its target enzyme (i.e., pyruvate dehydrogenase), thus affecting both protein synthesis and phosphorylation level and decreasing fat deposition in broiler chickens during embryonic development, which could reflect a physiologically-relevant DHEA fat-reduction mechanism in the broiler chicken.


The proteome profiling of EVs originating from senescent cell model using quantitative proteomics and parallel reaction monitoring.

  • Fengjuan Liu‎ et al.
  • Journal of proteomics‎
  • 2022‎

Senescence is the inevitable biological processes and is also considered as the biggest risk factor for the development of age - related diseases (ARDs) and geriatric syndrome (GS). Senescence is also known as inflammaging because it is characterized by persistent, long-term, low-grade inflammation named senescence-associated secretory phenotype (SASP). However, the mechanism for the persistence of inflammaging remains largely unclear. To explore the role of extracellular vesicles (EVs) in senescence/inflammaging, we established the cellular senescence model and performed TMT-based comparative quantitative proteomics and parallel reaction monitoring (PRM) to reveal the changes of EVs between young cells and senescent cells. A total of 3966 proteins were quantifiable, of which 132 were up-regulated, 144 were down-regulated, compared with the young cells. Subsequently, we chose 19 proteins involved in inflammation or proliferation to carry out PRM validation analysis. The result indicated that proteins promoting NF-κB signal pathway were up-regulated, and proteins promoting cell proliferation were down-regulated. The study provided a comprehensive altered proteomics profiles of EVs from senescent cells, and the result showed that EVs could serve as information carrier for further research on the pathogenesis and progression of senescence/inflammaging. SIGNIFICANCE: The mechanism of inflammaging occurrence and development has yet been clear. Therefore, this study attempts to provide an improved understanding of inflammaging from the perspective of EVs. The proteomics analysis revealed that the most changed proteins were connected to inflammation signaling pathways, cell growth and cell death, and PRM analysis results showed that proteins involved in NF-κB signal pathway and cell proliferation were more changed. The research systematically analyzed the profiles of proteins in senescence cell model, and the result indicated that further research should focus on the relationship between EVs and senescence/inflammaging.


Comparative Proteomics Analysis Reveals New Features of the Oxidative Stress Response in the Polyextremophilic Bacterium Deinococcus radiodurans.

  • Lihua Gao‎ et al.
  • Microorganisms‎
  • 2020‎

Deinococcus radiodurans is known for its extreme resistance to ionizing radiation, oxidative stress, and other DNA-damaging agents. The robustness of this bacterium primarily originates from its strong oxidative resistance mechanisms. Hundreds of genes have been demonstrated to contribute to oxidative resistance in D. radiodurans; however, the antioxidant mechanisms have not been fully characterized. In this study, comparative proteomics analysis of D. radiodurans grown under normal and oxidative stress conditions was conducted using label-free quantitative proteomics. The abundances of 852 of 1700 proteins were found to significantly differ between the two groups. These differential proteins are mainly associated with translation, DNA repair and recombination, response to stresses, transcription, and cell wall organization. Highly upregulated expression was observed for ribosomal proteins such as RplB, Rpsl, RpsR, DNA damage response proteins (DdrA, DdrB), DNA repair proteins (RecN, RecA), and transcriptional regulators (members of TetR, AsnC, and GntR families, DdrI). The functional analysis of proteins in response to oxidative stress is discussed in detail. This study reveals the global protein expression profile of D. radiodurans in response to oxidative stress and provides new insights into the regulatory mechanism of oxidative resistance in D. radiodurans.


Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics.

  • Alban Ordureau‎ et al.
  • Molecular cell‎
  • 2018‎

Flux through kinase and ubiquitin-driven signaling systems depends on the modification kinetics, stoichiometry, primary site specificity, and target abundance within the pathway, yet we rarely understand these parameters and their spatial organization within cells. Here we develop temporal digital snapshots of ubiquitin signaling on the mitochondrial outer membrane in embryonic stem cell-derived neurons, and we model HeLa cell systems upon activation of the PINK1 kinase and PARKIN ubiquitin ligase by proteomic counting of ubiquitylation and phosphorylation events. We define the kinetics and site specificity of PARKIN-dependent target ubiquitylation, and we demonstrate the power of this approach to quantify pathway modulators and to mechanistically define the role of PARKIN UBL phosphorylation in pathway activation in induced neurons. Finally, through modulation of pS65-Ub on mitochondria, we demonstrate that Ub hyper-phosphorylation is inhibitory to mitophagy receptor recruitment, indicating that pS65-Ub stoichiometry in vivo is optimized to coordinate PARKIN recruitment via pS65-Ub and mitophagy receptors via unphosphorylated chains.


Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure.

  • Piao Yang‎ et al.
  • Journal of proteomics‎
  • 2020‎

The conversion of light energy into chemical energy in leaves is very important for plant growth and development. During this process, chlorophylls and their derivatives are indispensable as their fundamental role in the energy absorption and transduction activities. Chlorophyll variation mutants are important materials for studying chlorophyll metabolism, chloroplast biogenesis, photosynthesis and related physiological processes. Here, a chlorophyll-reduced mutant (crm1) was isolated from ethyl methanesulfonate (EMS) mutagenized Brassica napus. Compared to wild type, crm1 showed yellow leaves, reduced chlorophyll content, fewer thylakoid stacks and retarded growth. Quantitative mass spectrometry analysis with Tandem Mass Tag (TMT) isobaric labeling showed that totally 4575 proteins were identified from the chloroplast of Brassica napus leaves, and 466 of which displayed differential accumulations between wild type and crm1. The differential abundance proteins were found to be involved in chlorophyll metabolism, photosynthesis, phagosome and proteasome. Our results suggest that the decreased abundance of chlorophyll biosynthetic enzymes, proteins involved in photosynthesis might account for the reduced chlorophyll content, impaired thylakoid structure, and reduction of plant productivity. The increased abundance of proteins involved in phagosome and proteasome pathways might allow plants to adapt the proteome to environmental conditions to ensure growth and survival due to chlorophyll reduction. BIOLOGICAL SIGNIFICANCE: Photosynthesis, which consists of light and dark reactions, is fundamental to biomass production. Chloroplast is regarded as the main site for photosynthesis. During photosynthesis, the pigment chlorophyll is essential for light harvesting and energy transfer. This work provides new insights into protein expression patterns, and enables the identification of many attractive candidates for investigation of chlorophyll biosynthesis, chloroplast structure and photosynthesis in Brassica napus. These findings may be applied to improve the photosynthetic efficiency by genetic engineering in crops.


Quantitative Proteomics Reveals the Dynamic Pathophysiology Across Different Stages in a Rat Model of Severe Traumatic Brain Injury.

  • Weikang Luo‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase.


Solidified glomerulosclerosis, identified using single glomerular proteomics, predicts end-stage renal disease in Chinese patients with type 2 diabetes.

  • Lijun Zhao‎ et al.
  • Scientific reports‎
  • 2021‎

Few histological prognostic indicators for end-stage renal disease (ESRD) have been validated in diabetic patients. This biopsy-based study aimed to identify nephropathological risk factors for ESRD in Chinese patients with type 2 diabetes. Histological features of 322 Chinese type 2 diabetic patients with biopsy-confirmed diabetic nephropathy (DN) were retrospectively analysed. Cox proportional hazards analysis was used to estimate the hazard ratio (HR) for ESRD. Single glomerular proteomics and immunohistochemistry were used to identify differentially expressed proteins and enriched pathways in glomeruli. During the median follow-up period of 24 months, 144 (45%) patients progressed to ESRD. In multivariable models, the Renal Pathology Society classification failed to predict ESRD, although the solidified glomerulosclerosis (score 1: HR 1.65, 95% confidence interval [CI] 1.04-2.60; score 2: HR 2.48, 95% CI 1.40-4.37) and extracapillary hypercellularity (HR 2.68, 95% CI 1.55-4.62) were identified as independent risk factors. Additionally, single glomerular proteomics, combined with immunohistochemistry, revealed that complement C9 and apolipoprotein E were highly expressed in solidified glomerulosclerosis. Therefore, solidified glomerulosclerosis and extracapillary hypercellularity predict diabetic ESRD in Chinese patients. Single glomerular proteomics identified solidified glomerulosclerosis as a unique pathological change that may be associated with complement overactivation and abnormal lipid metabolism.


Identification of significant potential signaling pathways and differentially expressed proteins in patients with wheat intolerance based on quantitative proteomics.

  • Wei Zhang‎ et al.
  • Journal of proteomics‎
  • 2021‎

Wheat intolerance has various systemic manifestations that can affect people's quality of life, and few studies have focused on the mechanism of wheat intolerance and the signaling pathways involved in wheat intolerance have not been fully identified. We compared the protein profiles of patients with wheat intolerance with those of healthy controls using LASSO (least absolute shrinkage and selection operator) and PLS (partial least squares regression) to obtain DEPs (differentially expressed proteins) for GO (Gene Ontology) analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, and PPI (protein-protein interaction) network analysis. Internal validation and external validation were conducted for target proteomics testing. The correlation between differently expressed protein and the wheat-specific IgG antibody concentration was analyzed. Then ROC curve (receiver operating characteristic curve) was generated to validate the differentially expressed proteins. We identified 33 DEPs as significant candidate proteins of wheat intolerance. These proteins were mainly enriched in complement and coagulation cascade pathways, immune activation, and immune response-related pathways. After internal and external target proteomics validation, CFHR3 (complement factor H-related protein 3) was identified as a key protein that may have an important role in wheat intolerance. We found CFHR3 protein expression abundance and the wheat-specific IgG antibody concentration were significantly negatively correlated (P = 0.035; Spearman correlation coefficient r = -0.565). The AUC (median area under the ROC curve) of CFHR3 is 0.857 in external verification data. This study provides insights into wheat intolerance that can be used to further explore the pathogenesis of this condition. SIGNIFICANCE: Proteomics has performed important potential in food allergy research and is conducive to improving our comprehension on molecular mechanisms of food allergy. The present study identified significant signaling pathways and differentially expressed proteins in patients with wheat intolerance by means of bioinformatics from the viewpoint of mass spectrometry-based proteomics, which provided insights into further research on the pathogenesis and timely diagnosis of wheat intolerance.


4D label-free quantitative proteomics analysis to screen potential drug targets of Jiangu Granules treatment for postmenopausal osteoporotic rats.

  • Haiming Lin‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Background: Postmenopausal osteoporosis (PMOP) is a disease with a high prevalence in postmenopausal women and is characterized by an imbalance in bone metabolism, reduced bone mass, and increased risk of fracture due to estrogen deficiency. Jiangu granules (JG) is a compound prescription used in traditional Chinese medicine to treat PMOP. However, its definitive mechanism in PMOP is unclear. This study used a 4D label-free quantitative proteomics method to explore the potential therapeutic mechanism of JG in an ovariectomy (OVX) rats' model. Materials and methods: A rat model of PMOP was established by removing the ovaries bilaterally. Nine 3-month-old specific-pathogen-free female SD rats. The nine rats were randomly divided into 3 groups (n = 3 in each group): the sham-operated group (J), the ovariectomy group (NC), and the JG treatment (ZY) group. Proteins extracted from the bone tissue of the lumbar spine (L3, L4) of three groups of rats were analyzed by 4D label-free quantitative proteomics, and proteins differentially expressed after JG treatment and proteins differentially expressed after de-ovulation were intersected to identify proteins associated with the mechanism of PMOP by JG treatment. Result: There were 104 up-regulated and 153 down-regulated differentially expressed proteins (DEPs) in the J group vs. NC group, 107 up-regulated and 113 down-regulated DEPs in the J group vs. ZY group, and 15 up-regulated and 32 down-regulated DEPs in the NC group vs. ZY group. Six potential target proteins for JG regulation of osteoblast differentiation in OVX rats were identified by taking intersections of differential proteins in the J group vs. NC group and NC group vs. ZY group. Conclusion: JG may exert therapeutic effects by modulating the expression levels of target proteins associated with osteoblast differentiation to enhance osteoblast differentiation in OVX rats. These results further uncovered the target proteins and specific mechanisms of JG in treating PMOP, providing an experimental basis for the clinical application of JG in treating PMOP.


Quantitative Proteomics and Relative Enzymatic Activities Reveal Different Mechanisms in Two Peanut Cultivars (Arachis hypogaea L.) Under Waterlogging Conditions.

  • Dengwang Liu‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Peanut is an important oil and economic crop in China. The rainy season (April-June) in the downstream Yangtze River in China always leads to waterlogging, which seriously affects plant growth and development. Therefore, understanding the metabolic mechanisms under waterlogging stress is important for future waterlogging tolerance breeding in peanut. In this study, waterlogging treatment was carried out in two different peanut cultivars [Zhonghua 4 (ZH4) and Xianghua08 (XH08)] with different waterlogging tolerance. The data-independent acquisition (DIA) technique was used to quantitatively identify the differentially accumulated proteins (DAPs) between two different cultivars. Meanwhile, the functions of DAPs were predicted, and the interactions between the hub DAPs were analyzed. As a result, a total of 6,441 DAPs were identified in ZH4 and its control, of which 49 and 88 DAPs were upregulated and downregulated under waterlogging stress, respectively, while in XH08, a total of 6,285 DAPs were identified, including 123 upregulated and 114 downregulated proteins, respectively. The hub DAPs unique to the waterlogging-tolerant cultivar XH08 were related to malate metabolism and synthesis, and the utilization of the glyoxylic acid cycle, such as L-lactate dehydrogenase, NAD+-dependent malic enzyme, aspartate aminotransferase, and glutamate dehydrogenase. In agreement with the DIA results, the alcohol dehydrogenase and malate dehydrogenase activities in XH08 were more active than ZH4 under waterlogging stress, and lactate dehydrogenase activity in XH08 was prolonged, suggesting that XH08 could better tolerate waterlogging stress by using various carbon sources to obtain energy, such as enhancing the activity of anaerobic respiration enzymes, catalyzing malate metabolism and the glyoxylic acid cycle, and thus alleviating the accumulation of toxic substances. This study provides insight into the mechanisms in response to waterlogging stress in peanuts and lays a foundation for future molecular breeding targeting in the improvement of peanut waterlogging tolerance, especially in rainy area, and will enhance the sustainable development in the entire peanut industry.


Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis.

  • Wei Zhang‎ et al.
  • International journal of oncology‎
  • 2019‎

Ovarian cancer remains the most lethal type of cancer among all gynecological malignancies. The majority of patients are diagnosed with ovarian cancer at the late stages of the disease. Therefore, there exists an imperative need for the development of early ovarian cancer diagnostic techniques. Exosomes, secreted by various cell types, play pivotal roles in intercellular communication, which emerge as promising diagnostic and prognostic biomarkers for ovarian cancer. In this study, we present for the first time, at least to the best of our knowledge, the proteomics profiling of exosomes derived from the plasma of patients with ovarian cancer via liquid chromatography tandem mass spectrometry (LC‑MS/MS) with tandem mass tagging (TMT). The exosomes enriched from patient plasma samples were characterized by nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), transmission electron microscopy (TEM) and western blot analysis. The size of the plasma exosomes fell into the range of 30 to 100 nm in diameter. The exosomal marker proteins, CD81 and TSG101, were clearly stained in the exosome samples; however, there was no staining for the endoplasmic reticulum protein, calnexin. A total of 294 proteins were identified with all exosome samples. Among these, 225 proteins were detected in both the cancerous and non‑cancerous samples. Apart from universal exosomal proteins, exosomes derived from ovarian cancer patient plasma also contained tumor‑specific proteins relevant to tumorigenesis and metastasis, particularly in epithelial ovarian carcinoma (EOC). Patients with EOC often suffer from coagulation dysfunction. The function of exosomes in coagulation was also examined. Several genes relevant to the coagulation cascade were screened out as promising diagnostic and prognostic factors that may play important roles in ovarian cancer progression and metastasis. On the whole, in this study, we successfully isolated and purified exosomes from plasma of patients with EOC, and identified a potential role of these exosomes in the coagulation cascade, as well as in the diagnosis and prognosis of patients.


Comparative Transcriptomics and Proteomics of Atractylodes lancea in Response to Endophytic Fungus Gilmaniella sp. AL12 Reveals Regulation in Plant Metabolism.

  • Jie Yuan‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

The fungal endophyte Gilmaniella sp. AL12 can establish a beneficial association with the medicinal herb Atractylodes lancea, and improve plant growth and sesquiterpenoids accumulation, which is termed "double promotion." Our previous studies have uncovered the underling primary mechanism based on some physiological evidences. However, a global understanding of gene or protein expression regulation in primary and secondary metabolism and related regulatory processes is still lacking. In this study, we employed transcriptomics and proteomics of Gilmaniella sp. AL12-inoculated and Gilmaniella sp. AL12-free plants to study the impact of endophyte inoculation at the transcriptional and translational levels. The results showed that plant genes involved in plant immunity and signaling were suppressed, similar to the plant response caused by some endophytic fungi and biotroph pathogen. The downregulated plant immunity may contribute to plant-endophyte beneficial interaction. Additionally, genes and proteins related to primary metabolism (carbon fixation, carbohydrate metabolism, and energy metabolism) tended to be upregulated after Gilmaniella sp. AL12 inoculation, which was consistent with our previous physiological evidences. And, Gilmaniella sp. AL12 upregulated genes involved in terpene skeleton biosynthesis, and upregulated genes annotated as β-farnesene synthase and β-caryophyllene synthase. Based on the above results, we proposed that endophyte-plant associations may improve production (biomass and sesquiterpenoids accumulation) by increasing the source (photosynthesis), expanding the sink (glycolysis and tricarboxylic acid cycle), and enhancing the metabolic flux (sesquiterpenoids biosynthesis pathway) in A. lancea. And, this study will help to further clarify plant-endophyte interactions.


A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome.

  • Weiqian Wang‎ et al.
  • Archives of toxicology‎
  • 2022‎

Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS. A tandem mass tag-based shotgun proteomics study was performed using primary cultured HSECs from mice with HSOS induced by senecionine, a representative toxic pyrrolizidine alkaloid (PA). Dynamic changes in proteome were found at the initial period of damage and the essential role of thrombospondin 1 (TSP1) was highlighted in PA-induced HSOS. TSP1 over-expression was further confirmed in human HSECs and liver samples from patients with PA-induced HSOS. LSKL peptide, a known TSP1 inhibitor, protected mice from senecionine-induced HSOS. In addition, TSP1 was found to be covalently modified by dehydropyrrolizidine alkaloids in human HSECs and mouse livers upon senecionine treatment, thus to form the pyrrole-protein adduct. These findings provide useful information on early changes in HSECs upon PA treatment and uncover TSP1 overexpression as a contributor in PA-induced HSOS.


Cell-cycle and apoptosis related and proteomics-based signaling pathways of human hepatoma Huh-7 cells treated by three currently used multi-RTK inhibitors.

  • Xuejiao Ren‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Sorafenib, lenvatinib and regorafenib, the multi-RTK inhibitors with potent anti-angiogenesis effects, are currently therapeutic drugs generally recommended for the patients with advanced hepatocellular carcinoma (HCC). To date, however, there have been no published studies on the mechanism underling differential effects of the three drugs on HCC cell proliferation, and the proteomic analysis in HCC cell lines treated by regorafenib or lenvatinib. The present study for the first time performed a direct comparison of the cell cycle arrest and apoptosis induction in the Huh-7 cells caused by sorafenib, regorafenib and lenvatinib at respective IC50 using flow cytometry technique, as well as their pharmacological interventions for influencing whole cell proteomics using tandem mass tag-based peptide-labeling coupled with the nLC-HRMS technique. Sorafenib, regorafenib and lenvatinib at respective IC50 drove the remaining surviving Huh-7 cells into a G0/G1 arrest, but lenvatinib and regorafenib were much more effective than sorafenib. Lenvatinib produced a much stronger induction of Huh-7 cells into early apoptosis than sorafenib and regorafenib, while necrotic cell proportion induced by regorafenib was 2.4 times as large as that by lenvatinib. The proteomic study revealed 419 proteins downregulated commonly by the three drugs at respective IC50. KEGG pathway analysis of the downregulated proteins indicated the ranking of top six signaling pathways including the spliceosome, DNA replication, cell cycle, mRNA surveillance, P53 and nucleotide excision repair involved in 33 proteins, all of which were directly related to their pharmacological effects on cell cycle and cell apoptosis. Notably, lenvatinib and regorafenib downregulated the proteins of PCNA, Cyclin B1, BCL-xL, TSP1, BUD31, SF3A1 and Mad2 much more strongly than sorafenib. Moreover, most of the proteins in the P53 signaling pathway were downregulated with lenvatinib and regorafenib by more than 36% at least. In conclusion, lenvatinib and regorafenib have much stronger potency against Huh-7 cell proliferation than sorafenib because of their more potent effects on cell cycle arrest and apoptosis induction. The underling mechanism may be at least due to the 33 downregulated proteins centralizing the signal pathways of cell cycle, p53 and DNA synthesis based on the present proteomics study.


ECRG4 acts as a tumor suppressor gene frequently hypermethylated in human breast cancer.

  • Gao-Yan Tang‎ et al.
  • Bioscience reports‎
  • 2019‎

Human breast cancer is a malignant form of tumor with a relatively high mortality rate. Although esophageal cancer-related gene 4 (ECRG4) is thought to be a possible potent tumor suppressor gene that acts to suppress breast cancer, its precise role in this disease is not understood. Herein, we assess the correlation between ECRG4 expression and DNA methylation, probing the potential epigenetic regulation of ECRG4 in breast cancer. We analyzed ECRG4 promoter methylation via methylation-specific PCR (MSPCR), bisulfite sequencing, and a promoter reporter assay in human breast cancer cell lines and samples. Gene expression was assessed by quantitative real-time PCR (qPCR), while protein levels were assessed by Western blotting. CCK8 assays were used to quantify cell growth; Esophageal cancer-related gene 4 wound healing assays were used to assess cellular migration, while flow cytometry was used to assess apoptosis and cell cycle progression. Apoptosome formation was validated via CO-IP and Western blotting. We found that human breast cancer samples exhibited increased methylation of the ECRG4 promoter and decreased ECRG4 expression. Remarkably, the down-regulation of ECRG4 was highly associated with promoter methylation, and its expression could be re-activated via 5-aza-2'-deoxycytidine treatment to induce demethylation. ECRG4 overexpression impaired breast cancer cell proliferation and migration, and led to G0/G1 cell cycle phase arrest. Moreover, ECRG4 induced the formation of the Cytc/Apaf-1/caspase-9 apoptosome and promoted breast cancer cell apoptosis. ECRG4 is silenced in human breast cancer cells and cell lines, likely owing to promoter hypermethylation. ECRG4 may act as a tumor suppressor, inhibiting proliferation and migration, inducing G0/G1 phase arrest and apoptosis via the mitochondrial apoptotic pathway.


Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway.

  • Chunxiao Ma‎ et al.
  • Clinical and translational medicine‎
  • 2023‎

Colorectal cancer (CRC) is a complex, multistep disease that arises from the interplay genetic mutations and epigenetic alterations. The histone H3K36 trimethyltransferase SET domain-containing 2 (SETD2), as an epigenetic signalling molecule, has a 5% mutation rate in CRC. SETD2 expression is decreased in the development of human CRC and mice treated with Azoxymethane /Dextran sodium sulfate (AOM/DSS). Loss of SETD2 promoted CRC development. SMAD Family member 4 (SMAD4) has a 14% mutation rate in CRC, and SMAD4 ablation leads to CRC. The co-mutation of SETD2 and SMAD4 predicted advanced CRC. However, little is known on the potential synergistic effect of SETD2 and SMAD4.


Comprehensive proteomic atlas of skin biomatrix scaffolds reveals a supportive microenvironment for epidermal development.

  • Ling Leng‎ et al.
  • Journal of tissue engineering‎
  • 2020‎

Biomaterial scaffolds are increasingly being used to drive tissue regeneration. The limited success so far in human tissues rebuilding and therapy application may be due to inadequacy of the functionality biomaterial scaffold. We developed a new decellularized method to obtain complete anatomical skin biomatrix scaffold in situ with extracellular matrix (ECM) architecture preserved, in this study. We described a skin scaffold map by integrated proteomics and systematically analyzed the interaction between ECM proteins and epidermal cells in skin microenvironment on this basis. They were used to quantify structure and function of the skin's Matrisome, comprised of core ECM components and ECM-associated soluble signals that are key regulators of epidermal development. We especially revealed that ECM played a role in determining the fate of epidermal stem cells through hemidesmosome components. These concepts not only bring us a new understanding of the role of the skin ECM niche, they also provide an attractive combinational strategy based on tissue engineering principles with skin biomatrix scaffold materials for the acceleration and enhancement of tissue regeneration.


Expression, purification, and characterization of SARS coronavirus RNA polymerase.

  • Ao Cheng‎ et al.
  • Virology‎
  • 2005‎

The RNA-dependent RNA polymerase (RdRp) of SARS coronavirus (SARS-CoV) is essential for viral replication and a potential target for anti-SARS drugs. We report here the cloning, expression, and purification of the N-terminal GST-fused SARS-CoV RdRp and its polymerase catalytic domain in Escherichia coli. During purification, the full-length GST-RdRp was found to cleave into three main fragments: an N-terminal p12 fragment, a middle p30 fragment, and a C-terminal p64 fragment comprising the catalytic domain, presumably due to bacterial proteases. Biochemical assays show that the full-length GST-RdRp has RdRp activity and the p64 and p12 fragments form a complex that exhibits comparable RdRp activity, whereas the GST-p64 protein has no activity, suggesting that the p12 domain is required for polymerase activity possibly via involvement in template-primer binding. Nonnucleoside HIV-1 RT inhibitors are shown to have no evident inhibitory effect on SARS-CoV RdRp activity. This work provides a basis for biochemical and structural studies of SARS-CoV RdRp and for development of anti-SARS drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: