Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 474 papers

Protein engineering and properties of human metalloproteinase and thrombospondin 1.

  • Ping Wei‎ et al.
  • Biochemical and biophysical research communications‎
  • 2002‎

This work generated many truncated proteins and Glu(385) to Ala (E(385)/A) mutants of the human metalloproteinase and thrombospondin 1 (METH-1 or ADAMTS1) and specific antibodies. METH-1 was an active endopeptidase and both the metalloproteinase and the disintegrin/cysteine-rich domains were required for the proteinase activity. A point mutation at the zinc-binding site (E(385)/A) abolished the catalytic activity. METH-1 protein function may be modulated through proteolytic cleavage at multiple sites. One 135 kDa species had an NH(2)-terminal sequence of L(33)GRPSEEDEE. A species at 115 kDa and some other protein bands began with F(236)VSSHRYV(243), indicating that METH-1 proenzyme might be activated by a proprotein convertase such as furin by cleaving the R(235)-F(236) peptide bond. This cleavage was not an autocatalytic process since the E(385)/A mutants were also processed. Furthermore, a 52 kDa band with an NH(2)-terminal sequence of L(800)KEPLTIQV resulted from the digestion between the first and the second thrombospondin 1-like motifs in the spacer region of the extracellular matrix-binding domains.


Engineering of galectin-3 for glycan-binding optical imaging.

  • Thais Canassa De Leo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Galectin-3 (Gal-3) is a multifunctional glycan-binding protein that participates in many pathophysiological events and has been described as a biomarker and potential therapeutic target for severe disorders, such as cancer. Several probes for Gal-3 or its ligands have been developed, however both the pathophysiological mechanisms and potential biomedical applications of Gal-3 remain not fully assessed. Molecular imaging using bioluminescent probes provides great sensitivity for in vivo and in vitro analysis for both cellular and whole multicellular organism tracking and target detection. Here, we engineered a chimeric molecule consisting of Renilla luciferase fused with mouse Gal-3 (RLuc-mGal-3). RLuc-mGal-3 preparation was highly homogenous, soluble, active, and has molecular mass of 65,870.95 Da. This molecule was able to bind to MKN45 cell surface, property which was inhibited by the reduction of Gal-3 ligands on the cell surface by the overexpression of ST6GalNAc-I. In order to obtain an efficient and stable delivery system, RLuc-mGal-3 was adsorbed to poly-lactic acid nanoparticles, which increased binding to MKN45 cells in vitro. Furthermore, bioluminescence imaging showed that RLuc-mGal-3 was able to indicate the presence of implanted tumor in mice, event drastically inhibited by the presence of lactose. This novel bioluminescent chimeric molecule offers a safe and highly sensitive alternative to fluorescent and radiolabeled probes with potential application in biomedical research for a better understanding of the distribution and fate of Gal-3 and its ligands in vitro and in vivo.


Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling.

  • Szilárd Kamondi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

A possible approach to generate enzymes with an engineered temperature optimum is to create chimeras of homologous enzymes with different temperature optima. We tested this approach using two family-10 xylanases from Thermotoga maritima: the thermophilic xylanase A catalytic domain (TmxAcat, T(opt)=68 degrees C), and the hyperthermophilic xylanase B (TmxB, T(opt)=102 degrees C). Twenty-one different chimeric constructs were created by mimicking family shuffling in a rational manner. The measured temperature optima of the 16 enzymatically active chimeras do not monotonically increase with the percentage of residues coming from TmxB. Only four chimeras had a higher temperature optimum than TmxAcat, the most stable variant (T(opt)=80 degrees C) being the one in which both terminal segments came from TmxB. Further analysis suggests that the interaction between the N- and C-terminal segments has a disproportionately high contribution to the overall thermostability. The results may be generalizable to other enzymes where the N- and C-termini are in contact.


Engineering and characterization of a humanized antibody targeting TNF-α and RANKL.

  • Jun Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

To neutralize the pathological activities of tumor necrosis factor-α (TNF-α) and receptor activator of NF-κB ligand (RANKL), we engineered and characterized a humanized 8G12 (h8G12) antibody that targeted TNF-α and RANKL. Standard molecular biological and complementarity determining region (CDR)-grafting techniques were used to engineer the h8G12 antibody, and enzyme-linked immunosorbent assays (ELISAs) and Western blotting were employed to determine its binding activation and specificity. TNF-α-mediated cytotoxicity and RANKL-induced osteoclastogenesis assays were used to evaluate the neutralizing effects of the antibody. The cDNA sequences were established by grafting the murine monoclonal antibody (mAb) 8G12 CDRs into the heavy and light chain (HC and LC) variable regions (VH and VL) of the human mAbs 3DGG_B and 1I9R_L, respectively. The recombinant plasmids were transfected into Chinese hamster ovary (CHO) cells to produce the h8G12 antibody, which could simultaneously recognize TNF-α and RANKL. In addition, the h8G12 antibody reduced the TNF-α-mediated apoptosis of L929 cells by 25.84%. Furthermore, the h8G12 antibody significantly inhibited leukocyte infiltration in a murine allergic contact inflammation model. Concurrent with the inhibition of apoptosis, the h8G12 antibody significantly reduced the number of osteoclast-like cells in a dose-dependent manner. These results demonstrated that the h8G12 antibody neutralized the activities of TNF-α and RANKL and that it might be a potential candidate for the treatment of inflammatory bone diseases, such as rheumatoid arthritis (RA).


Engineering of an oleate hydratase for efficient C10-Functionalization of oleic acid.

  • Qi-Fan Sun‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Oleate hydratase catalyzes the hydration of unsaturated fatty acids, giving access to C10-functionalization of oleic acid. The resultant 10-hydroxystearic acid is a key material for the synthesis of many biomass-derived value-added products. Herein, we report the engineering of an oleate hydratase from Paracoccus aminophilus (PaOH) with significantly improved catalytic efficiency (from 33 s-1 mM-1 to 119 s-1 mM-1), as well as 3.4 times increased half-life at 30 °C. The structural mechanism regarding the impact of mutations on the improved catalytic activity and thermostability was elucidated with the aid of molecular dynamics simulation. The practical feasibility of the engineered PaOH variant F233L/F122L/T15 N was demonstrated through the pilot synthesis of 10-hydroxystearic acid and 10-oxostearic acid via an optimized multi-enzymatic cascade reaction, with space-time yields of 540 g L-1 day-1 and 160 g L-1 day-1, respectively.


Cell surface-engineering to embed targeting ligands or tracking agents on the cell membrane.

  • Kwang Suk Lim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

The key challenge to improve the efficacy of cell therapy is how to efficiently modify cells with a specific molecule or compound that can guide the cells to the target tissue. To address this, we have developed a cell surface engineering technology to non-invasively modify the cell surface. This technology can embed a wide variety of bioactive molecules on any cell surface and allow for the targeting of a wide range of tissues in a variety of disease states. Using our cell surface engineering technology, mesenchymal stem cells (MSC)s were modified with: 1) a homing peptide or a recombinant protein to facilitate the migration of the cells toward a specific molecular target; or 2) magnetic resonance imaging (MRI) contrast agents to allow for in vivo tracking of the cells. The incorporation of a homing peptide or a targeting ligand on MSCs facilitated the migration of the cells toward their molecular target. MRI contrast agents were successfully embedded on the cell surfaces without adverse effects to the cells and the contrast agent-labeled cells were detectable by MRI. Our technology is a promising method of cell surface engineering that is applicable to a broad range of cell therapies.


Reconstruction of functional endometrium-like tissue in vitro and in vivo using cell sheet engineering.

  • Soichi Takagi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Uterus is a female specific reproductive organ and plays critical roles in allowing embryo to grow. Therefore, the endometrial disorders lead to female infertility. Hence, the regeneration of endometrium allowing fertilized ovum to implant might be valuable in the field of fertility treatment. Recently, cell sheet engineering using a temperature-responsive culture dish has advanced in regenerative medicine. With this technology, endometrial cells were harvested as a contiguous cell sheet by reducing temperature. Firstly, mouse endometrial cell sheets were re-cultured for 3 days to evaluate the function. Histological analyses revealed that endometrial epithelial cell-specific cytokeratin 18 and female-specific hormone receptors, estrogen receptor β and progesterone receptor, were expressed. Furthermore, endometrial epithelial cells constructed epithelial layer at the apical side. Then, endometrial cell sheets from green-fluorescent-protein rat cells were transplanted onto the buttock muscle of nude rat for evaluating the function in vivo. Histological analyses showed that endometrial cell sheets reconstructed endometrium-like tissue, which was found to form uterus-specific endometrial glands having hormonal receptor to estrogen. In this study, endometrial cell sheets were speculated to contribute to the regeneration of functional endometrium as a new therapy.


Substrate access tunnel engineering for improving the catalytic activity of a thermophilic nitrile hydratase toward pyridine and pyrazine nitriles.

  • Zhongyi Cheng‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Nitrile hydratase (NHase) is able to bio-transform nitriles into amides. As nitrile hydration being an exothermic reaction, a NHase with high activity and stability is needed for amide production. However, the widespread use of NHase for amide bio-production is limited by an activity-stability trade-off. In this study, through the combination of substrate access tunnel calculation, residue conservative analysis and site-saturation mutagenesis, a residue located at the substrate access tunnel entrance of the thermophilic NHase from extremophile Caldalkalibacillus thermarum TA2. A1, βLeu48, was semi-rationally identified as a potential gating residue that directs the enzymatic activity toward various pyridine and pyrazine nitriles. The specific activity of the corresponding mutant βL48H towards 3-cyanopyridine, 2-cyanopyridine and cyanopyrazine were 2.4-fold, 2.8-fold and 3.1-fold higher than that of its parent enzyme, showing a great potential in the industrial production of high-value pyridine and pyrazine carboxamides. Further structural analysis demonstrated that the βHis48 could form a long-lasting hydrogen bond with αGlu166, which contributes to the expansion of the entrance of substrate access tunnel and accelerate substrate migration.


A novel protein-engineered dsDNA-binding protein (HU-Simulacrum) inspired by HU, a nucleoid-associated DNABII protein.

  • Bhishem Thakur‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

HU, a DNA-binding protein, has a helical N-terminal region (NTR) of ∼44 residues and a beta strand- and IDR-rich C-terminal region (CTR) of ∼46 residues. CTR binds to DNA through (i) a clasp (two arginine/lysine-rich, IDR-rich beta hairpins that bind to phosphate groups in the minor groove), (ii) a flat surface (comprising four antiparallel beta strands that abut the major groove), and (iii) a charge cluster (two lysine residues upon a short C-terminal helix). HU forms a dimer displaying extensive inter-subunit CTR-CTR contacts. A single-chain simulacrum of these contacts (HU-Simul) incorporating all DNA-binding elements was created by fusing together the CTRs of Escherichia coli HU-A and Thermus thermophilus HU. HU-Simul is monomeric, binds to dsDNA and cruciform DNA, but not to ssDNA.


Engineering of an EpCAM-targeting cyclic peptide to improve the EpCAM-mediated cellular internalization and tumor accumulation of a peptide-fused antibody.

  • Seong-Wook Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Fusion of a target-specific peptide to a full-length antibody (Ab) can result in a peptide-Ab fusion protein with additional specificity and enhanced activity. We recently developed an intracellular pan-RAS-targeting cytosol-penetrating antibody, RT22-ep59, in which a tumor-specific targeting ability was achieved via the fusion of an epithelial cell adhesion molecule (EpCAM) targeting cyclic peptide (ep133). Here, the aim was to enhance EpCAM-mediated endocytosis and tumor accumulation of the peptide-fused RAS-targeting Ab. Accordingly, we engineered a cyclic peptide (from ep133) that has stronger affinity for EpCAM by using yeast surface display technology and then rationally designed cyclic peptides in the Ab-fused form to enhance colloidal stability. The finally engineered EpCAM-targeting cyclic peptide (ep6)-fused Ab, ep6Ras37, has ∼10-fold stronger affinity (KD ≈ 1.9 nM) for EpCAM than that of RT22-ep59, without deterioration of biophysical properties. Compared with the parental antibody (RT22-ep59), ep6Ras37 more efficiently reached the cytosol of EpCAM-expressing cells and showed greater preferential tumor homing and accumulation in mice bearing EpCAM-expressing LoVo xenograft tumors. Thus, the high-affinity EpCAM-targeting peptide ensures efficient cellular internalization and better tumor accumulation of the peptide-fused Ab.


High resolution structure of Vibrio cholerae acylphosphatase (VcAcP) cage: Identification of drugs, location of its binding site and engineering to facilitate cage formation.

  • Shramana Chatterjee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Protein cages have recently emerged as an extraordinary drug-delivery system due to its biocompatibility, biodegradability, low toxicity, ease to manipulate and engineer. We have reported earlier the formation and architecture of a do-decameric cage-like architecture of Vibrio cholerae acylphosphatase (VcAcP) at 3.1 Å. High resolution (2.4 Å) crystal structure of VcAcP cage, reported here, illuminates a potential binding site for sulphate/phosphate containing drugs whereas analysis of its subunit association and interfaces indicates high potential for cage engineering. Tryptophan quenching studies indeed discloses noteworthy binding with various sulphate/phosphate containing nucleotide-based drugs and vitamin B6 (PLP) demonstrating that exterior surface of VcAcP protein cage can be exploited as multifunctional carrier. Moreover, a quadruple mutant L30C/T68C/N40C/L81C-VcAcP (QM-VcAcP) capable to form an intricate disulphide bonded VcAcP cage has been designed. SEC, SDS-PAGE analysis and DLS experiment confirmed cysteine mediated engineered VcAcP cage formation.


Engineering a U-box of E3 ligase E4B through yeast surface display-based functional screening generates a variant with enhanced ubiquitin ligase activity.

  • Seong-Wook Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Ubiquitination is the covalent attachment of ubiquitin (Ub) to substrate proteins and regulates several cellular processes, including protein degradation. Ub ligases (E3s) bring a Ub-conjugated enzyme E2 (E2-Ub) and the target protein closer to enable ubiquitination. In this study, we engineered a U-box domain of human U-box-type E3 E4B (E4BU) to enhance its function as a Ub ligase by accelerating the rate of Ub transfer directly from Ub-loaded human E2 UbcH5b (E2(UbcH5b)-Ub) to the proximal substrate. We developed a functional screening system for the E4BU library using a yeast surface display system combined with fluorescence-activated cell sorting (FACS) to isolate functionally improved variants. This phenotypic screening system yielded an E4BU variant, E4BU(#8), which exhibited an approximately 4-fold greater Ub ligase activity rate in the yeast displayed form than that of the E4BU wild-type. When E4BU(#8) was fused to a green fluorescent protein (GFP)-specific nanobody, the fusion protein polyubiquitinated GFP in proportion to the concentration and incubation time, with an approximately 3-fold faster Ub ligase activity rate than the previously isolated E4BU(NT) variant. Importantly, the engineered E4BU(#8) retained endogenous Lys48-linked polyubiquitination activity, which is essential for substrate degradation by the 26S proteasome. Our results indicated that E4BU(#8), which binds to and allosterically stimulates E2(UbcH5b)-Ub to enhance Ub transferase activity to a substrate, may be valuable in designing biological molecules for targeted protein degradation.


Valosin-containing protein (VCP) is a novel IQ motif-containing GTPase activating protein 1 (IQGAP1)-interacting protein.

  • Norimichi Itoh‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Scaffold proteins play a pivotal role in making protein complexes, and organize binding partners into a functional unit to enhance specific signaling pathways. IQ motif-containing GTPase activating protein 1 (IQGAP1) is an essential protein for spine formation due to its role in scaffolding multiple signal complexes. However, it remains unclear how IQGAP1 interacts within the brain. In the present study, we screened novel IQGAP1-interacting proteins by a proteomic approach. As a novel IQGAP1-interacting protein, we identified valosin-containing protein (VCP) which is a causative gene in patients with inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD). The physiological interaction of IQGAP1 with VCP was confirmed by an immunoprecipitation assay. Both the N-terminal (N-half) and C-terminal (C-half) fragments of IQGAP1 interacted with the N-terminal region of VCP. Co-localization of IQGAP1 and VCP was observed in the growth corn, axonal shaft, cell body, and dendrites in cultured hippocampal neurons at 4 days in vitro (DIV4). In cultured neurons at DIV14, IQGAP1 co-localized with VCP in dendrites. When HEK293T cells were co-transfected with IQGAP1 and VCP, an immunoprecipitation assay revealed that binding of IQGAP1 with disease-related mutant (R155H or A232E) VCP was markedly reduced compared to wild-type (WT) VCP. These results suggest that reduction of IQGAP1 and VCP interaction may be associated with the pathophysiology of IBMPFD.


How accurately can we discriminate G-protein-coupled receptors as 7-tms TM protein sequences from other sequences?

  • Yasuhito Inoue‎ et al.
  • Biochemical and biophysical research communications‎
  • 2005‎

The group of 2502 transmembrane (TM) protein sequences with seven TM segments (7-tms) registered in SWISS-PROT 46.0 contains 2200 G-protein-coupled receptors (GPCRs), indicating that GPCR candidates can be detected with a reliability of 87.9% in the eukaryotic genomes merely by correctly predicting the number of TM segments as 7-tms. The predictive accuracies of TM topology-prediction methods proposed so far are not as high as expected; even the best method, HMMTOP 2.0, can only achieve a capture rate of 7-tms sequences of 77.6%. It is necessary to improve this performance as much as possible, even if by only a few percentage points, in order to identify as many novel GPCR candidate genes as possible among the increasing number of newly sequenced genomes. In this study, we propose a simple but useful prediction method for detecting as many 7-tms TM protein sequences as GPCR candidates in eukaryotic genomes as possible. This is achieved by employing a two-step prediction procedure. The first step involves collecting 7-tms sequences by the best prediction method (HMMTOP 2.0), and the second involves picking up the remaining 7-tms sequences by the second-best method (TMHMM 2.0). By this procedure, the capture rate of 7-tms TM protein sequences in SWISS-PROT can be improved considerably from 77.6% to 84.5%, and the number of GPCR candidate sequences predicted as 7-tms in the human genome (Build 35) is increased from 790 (by HMMTOP 2.0) to 903. These 790 and 903 candidate sequences include, respectively, 587 and 636 of the known human GPCRs of the 717 registered in SWISS-PROT 46.0, demonstrating that the proposed combinatorial method is effective in detecting GPCR candidate genes in eukaryotic genomes.


SUMOylation of damaged DNA-binding protein DDB2.

  • Maasa Tsuge‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Damaged DNA-binding protein (DDB) is a heterodimer composed of two subunits, p127 and p48, which have been designated DDB1 and DDB2, respectively. DDB2 recognizes and binds to UV-damaged DNA during nucleotide excision repair. Here, we demonstrated that DDB2 was SUMOylated in a UV-dependent manner, and its major SUMO E3 ligase was PIASy as determined by RNA interference-mediated knockdown. The UV-induced physical interaction between DDB2 and PIASy supported this notion. PIASy knockdown reduced the removal of cyclobutane pyrimidine dimers (CPDs) from total genomic DNA, but did not affect that of 6-4 pyrimidine pyrimidone photoproducts (6-4PPs). Thus, DDB2 plays an indispensable role in CPD repair, but not in 6-4PP repair, which is consistent with the observation that DDB2 was SUMOylated by PIASy. These results suggest that the SUMOylation of DDB2 facilitates CPD repair.


Involvement of autophagic protein DEF8 in Lewy bodies.

  • Makoto Timon Tanaka‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Dysregulation of autophagy, one of the major processes through which abnormal proteins are degraded, is a cardinal feature of synucleinopathies, including Lewy body diseases [Parkinson's disease (PD) and dementia with Lewy bodies (DLB)] and multiple system atrophy (MSA), which are characterized by the presence of abnormal α-synuclein in neurons and glial cells. Although several research groups have reported that Rubicon family proteins can regulate autophagosome-lysosome fusion or positioning, little is known about their involvement in synucleinopathies. In the present study, by studying patients with PD (N = 8), DLB (N = 13), and MSA (N = 5) and controls (N = 16), we explored the involvement of Rubicon family proteins [Rubicon, Pacer and differentially expressed in FDCP8 (DEF8)] in synucleinopathies. Immunohistochemical analysis showed that not only brainstem-type Lewy bodies but also cortical Lewy bodies were immunoreactive for DEF8 in Lewy body diseases, whereas Rubicon and Pacer were detectable in only a few brainstem-type Lewy bodies in PD. Glial cytoplasmic inclusions in patients with MSA were not immunoreactive for Rubicon, Pacer or DEF8. Immunoblotting showed significantly increased protein levels of DEF8 in the substantia nigra and putamen of patients with PD and the temporal cortex of patients with DLB. In addition, the smear band of DEF8 appeared in the insoluble fraction where that of phosphorylated α-synuclein was detected. These findings indicate the involvement of DEF8 in the formation of Lewy bodies. Quantitative and qualitative alterations in DEF8 may reflect the dysregulation of autophagy in Lewy body diseases.


Protein disulfide isomerase mediates glutathione depletion-induced cytotoxicity.

  • Kazushi Okada‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Glutathione depletion is a distinct cause underlying many forms of pathogenesis associated with oxidative stress and cytotoxicity. Earlier studies showed that glutamate-induced glutathione depletion in immortalized murine HT22 hippocampal neuronal cells leads to accumulation of reactive oxygen species (ROS) and ultimately cell death, but the precise mechanism underlying these processes is not clear. Here we show that during the induction of glutathione depletion, nitric oxide (NO) accumulation precedes ROS accumulation. While neuronal NO synthase (nNOS) in untreated HT22 cells exists mostly as a monomer, glutathione depletion results in increased formation of the dimer nNOS, accompanied by increases in the catalytic activity. We identified that nNOS dimerization is catalyzed by protein disulfide isomerase (PDI). Inhibition of PDI's isomerase activity effectively abrogates glutathione depletion-induced conversion of monomer nNOS into dimer nNOS, accumulation of NO and ROS, and cytotoxicity. Furthermore, we found that PDI is present in untreated cells in an inactive S-nitrosylated form, which becomes activated following glutathione depletion via S-denitrosylation. These results reveal a novel role for PDI in mediating glutathione depletion-induced oxidative cytotoxicity, as well as its role as a valuable therapeutic target for protection against oxidative cytotoxicity.


Creating a TALE protein with unbiased 5'-T binding.

  • Shogo Tsuji‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Transcription activator-like effectors (TALEs) are convenient tools for genome engineering at specific genomic sites. However, their use is constrained because most TALE binding sites are preceded by a highly conserved 5' terminal T nucleotide (5'-T). To remove the 5'-T constraint, we substituted tryptophan 232 in the repeat-1 loop region of the dHax3 N-terminal domain for other amino acids. Furthermore, we randomized four amino acid residues of the hairpin loop region of repeat-1. Although point mutation was insufficient to remove the 5'-T constraint, directed evolution from the randomized library yielded repeat-1 mutants with unbiased targeting sites for 5'-bases. Our result indicates that the repeat-1 loop region of dHax3 is important for 5'-base accommodation, and that molecular evolution of repeat-1 of TALEs is an efficient strategy to remove the 5'-T constraint and thus allow targeting of any DNA sequences.


Dynamic G protein alpha signaling in Arabidopsis innate immunity.

  • Lahong Xu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Heterotrimeric G proteins composed of Gα, Gβ and Gγ subunits are evolutionarily conserved signaling modules involved in diverse biological processes in plants and animals. The role and action of Gα remain largely enigmatic in plant innate immunity. We have recently demonstrated that Arabidopsis Gα (GPA1) is a key component of a new immune signaling pathway activated by bacteria-secreted proteases. Here we show that GPA1 is also involved in the signaling network of Arabidopsis in response to the bacterial flagellin epitope flg22. Specifically, GPA1 plays a pivotal role in an immune pathway involving the flg22 receptor FLS2, co-receptor BAK1, Regulator of G Signaling 1 (RGS1), and Arabidopsis Gβ (AGB1), in which flg22 elicits GPA1/AGB1 dissociation from the FLS2/BAK1/RGS1 receptor complex. Consequently, we observed flg22-induced degradation of FLS2, BAK1 and RGS1 but not GPA1 or AGB1. We also found that GPA1 constitutively interacts with the NADPH oxidase RbohD to potentiate flg22-induced ROS burst independently of the central cytoplasmic kinase BIK1. Taken together, our work sheds multiple novel insights into the functions and regulatory mechanisms of GPA1 in Arabidopsis innate immunity.


Functional characterization of alpha-synuclein protein with antimicrobial activity.

  • Seong-Cheol Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Alpha-synuclein (α-Syn), a small (14 kDa) protein associated with Parkinson's disease, is abundant in human neural tissues. α-Syn plays an important role in maintaining a supply of synaptic vesicles in presynaptic terminals; however, the mechanism by which it performs this function are not well understood. In addition, there is a correlation between α-Syn over-expression and upregulation of an innate immune response. Given the growing body of literature surrounding antimicrobial peptides (AMPs) in the brain, and the similarities between α-Syn and a previously characterized AMP, Amyloid-β, we set out to investigate if α-Syn shares AMP-like properties. Here we demonstrate that α-Syn exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, we demonstrate a role for α-Syn in inhibiting various pathogenic fungal strains such as Aspergillus flavus, Aspergillus fumigatus and Rhizoctonia solani. We also analyzed localizations of recombinant α-Syn protein in E. coli and Candida albicans. These results suggest that in addition to α-Syn's role in neurotransmitter release, it appears to be a natural AMP.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: