Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish.

  • Kai K Lie‎ et al.
  • BMC genomics‎
  • 2018‎

The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species.


"Out of the Can": A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine, Sardina pilchardus.

  • André M Machado‎ et al.
  • Genes‎
  • 2018‎

Clupeiformes, such as sardines and herrings, represent an important share of worldwide fisheries. Among those, the European sardine (Sardina pilchardus, Walbaum 1792) exhibits significant commercial relevance. While the last decade showed a steady and sharp decline in capture levels, recent advances in culture husbandry represent promising research avenues. Yet, the complete absence of genomic resources from sardine imposes a severe bottleneck to understand its physiological and ecological requirements. We generated 69 Gbp of paired-end reads using Illumina HiSeq X Ten and assembled a draft genome assembly with an N50 scaffold length of 25,579 bp and BUSCO completeness of 82.1% (Actinopterygii). The estimated size of the genome ranges between 655 and 850 Mb. Additionally, we generated a relatively high-level liver transcriptome. To deliver a proof of principle of the value of this dataset, we established the presence and function of enzymes (Elovl2, Elovl5, and Fads2) that have pivotal roles in the biosynthesis of long chain polyunsaturated fatty acids, essential nutrients particularly abundant in oily fish such as sardines. Our study provides the first omics dataset from a valuable economic marine teleost species, the European sardine, representing an essential resource for their effective conservation, management, and sustainable exploitation.


The Grayling Genome Reveals Selection on Gene Expression Regulation after Whole-Genome Duplication.

  • Srinidhi Varadharajan‎ et al.
  • Genome biology and evolution‎
  • 2018‎

Whole-genome duplication (WGD) has been a major evolutionary driver of increased genomic complexity in vertebrates. One such event occurred in the salmonid family ∼80 Ma (Ss4R) giving rise to a plethora of structural and regulatory duplicate-driven divergence, making salmonids an exemplary system to investigate the evolutionary consequences of WGD. Here, we present a draft genome assembly of European grayling (Thymallus thymallus) and use this in a comparative framework to study evolution of gene regulation following WGD. Among the Ss4R duplicates identified in European grayling and Atlantic salmon (Salmo salar), one-third reflect nonneutral tissue expression evolution, with strong purifying selection, maintained over ∼50 Myr. Of these, the majority reflect conserved tissue regulation under strong selective constraints related to brain and neural-related functions, as well as higher-order protein-protein interactions. A small subset of the duplicates have evolved tissue regulatory expression divergence in a common ancestor, which have been subsequently conserved in both lineages, suggestive of adaptive divergence following WGD. These candidates for adaptive tissue expression divergence have elevated rates of protein coding- and promoter-sequence evolution and are enriched for immune- and lipid metabolism ontology terms. Lastly, lineage-specific duplicate divergence points toward underlying differences in adaptive pressures on expression regulation in the nonanadromous grayling versus the anadromous Atlantic salmon. Our findings enhance our understanding of the role of WGD in genome evolution and highlight cases of regulatory divergence of Ss4R duplicates, possibly related to a niche shift in early salmonid evolution.


A continuous genome assembly of the corkwing wrasse (Symphodus melops).

  • Morten Mattingsdal‎ et al.
  • Genomics‎
  • 2018‎

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50 = 461,652 bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses.


An improved genome assembly uncovers prolific tandem repeats in Atlantic cod.

  • Ole K Tørresen‎ et al.
  • BMC genomics‎
  • 2017‎

The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies.


Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats.

  • Ole K Tørresen‎ et al.
  • BMC genomics‎
  • 2018‎

Increased availability of genome assemblies for non-model organisms has resulted in invaluable biological and genomic insight into numerous vertebrates, including teleosts. Sequencing of the Atlantic cod (Gadus morhua) genome and the genomes of many of its relatives (Gadiformes) demonstrated a shared loss of the major histocompatibility complex (MHC) II genes 100 million years ago. An improved version of the Atlantic cod genome assembly shows an extreme density of tandem repeats compared to other vertebrate genome assemblies. Highly contiguous assemblies are therefore needed to further investigate the unusual immune system of the Gadiformes, and whether the high density of tandem repeats found in Atlantic cod is a shared trait in this group.


The genomic mosaicism of hybrid speciation.

  • Tore O Elgvin‎ et al.
  • Science advances‎
  • 2017‎

Hybridization is widespread in nature and, in some instances, can result in the formation of a new hybrid species. We investigate the genetic foundation of this poorly understood process through whole-genome analysis of the hybrid Italian sparrow and its progenitors. We find overall balanced yet heterogeneous levels of contribution from each parent species throughout the hybrid genome and identify areas of novel divergence in the hybrid species exhibiting signals consistent with balancing selection. High-divergence areas are disproportionately located on the Z chromosome and overrepresented in gene networks relating to key traits separating the focal species, which are likely involved in reproductive barriers and/or species-specific adaptations. Of special interest are genes and functional groups known to affect body patterning, beak morphology, and the immune system, which are important features of diversification and fitness. We show that a combination of mosaic parental inheritance and novel divergence within the hybrid lineage has facilitated the origin and maintenance of an avian hybrid species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: