2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Learning to read words in a new language shapes the neural organization of the prior languages.

  • Leilei Mei‎ et al.
  • Neuropsychologia‎
  • 2014‎

Learning a new language entails interactions with one׳s prior language(s). Much research has shown how native language affects the cognitive and neural mechanisms of a new language, but little is known about whether and how learning a new language shapes the neural mechanisms of prior language(s). In two experiments in the current study, we used an artificial language training paradigm in combination with an fMRI to examine (1) the effects of different linguistic components (phonology and semantics) of a new language on the neural process of prior languages (i.e., native and second languages), and (2) whether such effects were modulated by the proficiency level in the new language. Results of Experiment 1 showed that when the training in a new language involved semantics (as opposed to only visual forms and phonology), neural activity during word reading in the native language (Chinese) was reduced in several reading-related regions, including the left pars opercularis, pars triangularis, bilateral inferior temporal gyrus, fusiform gyrus, and inferior occipital gyrus. Results of Experiment 2 replicated the results of Experiment 1 and further found that semantic training also affected neural activity during word reading in the subjects׳ second language (English). Furthermore, we found that the effects of the new language were modulated by the subjects׳ proficiency level in the new language. These results provide critical imaging evidence for the influence of learning to read words in a new language on word reading in native and second languages.


Fiber connectivity between the striatum and cortical and subcortical regions is associated with temperaments in Chinese males.

  • Xuemei Lei‎ et al.
  • NeuroImage‎
  • 2014‎

The seven-factor biopsychosocial model of personality distinguished four biologically based temperaments and three psychosocially based characters. Previous studies have suggested that the four temperaments-novelty seeking (NS), reward dependence (RD), harm avoidance (HA), and persistence (P)-have their respective neurobiological correlates, especially in the striatum-connected subcortical and cortical networks. However, few studies have investigated their neurobiological basis in the form of fiber connectivity between brain regions. This study correlated temperaments with fiber connectivity between the striatum and subcortical and cortical hub regions in a sample of 50 Chinese adult males. Generally consistent with our hypotheses, results showed that: (1) NS was positively correlated with fiber connectivity from the medial and lateral orbitofrontal cortex (mOFC, lOFC) and amygdala to the striatum; (2) RD was positively correlated with fiber connectivity from the mOFC, posterior cingulate cortex/retrosplenial cortex (PCC), hippocampus, and amygdala to the striatum; (3) HA was positively linked to fiber connectivity from the dorsolateral prefrontal cortex (dlPFC) and PCC to the striatum; and (4) P was positively linked to fiber connectivity from the mOFC to the striatum. These results extended the research on the neurobiological basis of temperaments by identifying their anatomical fiber connectivity correlates within the subcortical-cortical neural networks.


Language-general and -specific white matter microstructural bases for reading.

  • Mingxia Zhang‎ et al.
  • NeuroImage‎
  • 2014‎

In the past decade, several studies have investigated language-general and -specific brain regions for reading. However, very limited research has examined the white matter that connects these cortical regions. By using diffusion tensor imaging (DTI), the current study investigated the common and divergent relationship between white matter integrity indexed by fractional anisotropy (FA) and native language reading abilities in 89 Chinese and 93 English speakers. Conjunction analysis revealed that for both groups, reading ability was associated with the FA of seven white matter fiber bundles in two main anatomical locations in the left hemisphere: the dorsal corona radiate/corpus callosum/superior longitudinal fasciculus which might be for phonological access, and the ventral uncinate fasciculus/external capsule/inferior fronto-occipital fasciculus which might be for semantic processing. Contrast analysis showed that the FA of the left temporal part of superior longitudinal fasciculus contributed more to reading in English than in Chinese, which is consistent with the notion that this tract is involved in grapheme-to-phoneme conversion for alphabetic language reading. These results are the first evidence of language-general and -specific white matter microstructural bases for reading.


Distributed attribute representation in the superior parietal lobe during probabilistic decision-making.

  • Pinchun Wang‎ et al.
  • Human brain mapping‎
  • 2023‎

Several studies have examined the neural substrates of probabilistic decision-making, but few have systematically investigated the neural representations of the two objective attributes of probabilistic rewards, that is, the reward amount and the probability. Specifically, whether there are common or distinct neural activity patterns to represent the objective attributes and their association with the neural representation of the subjective valuation remains largely underexplored. We conducted two studies (nStudy1  = 34, nStudy2  = 41) to uncover distributed neural representations of the objective attributes and subjective value as well as their association with individual probability discounting rates. The amount and probability were independently manipulated to better capture brain signals sensitive to these two attributes and were presented simultaneously in Study 1 and successively in Study 2. Both univariate and multivariate pattern analyses showed that the brain activities in the superior parietal lobule (SPL), including the postcentral gyrus, were modulated by the amount of rewards and probability in both studies. Further, representational similarity analysis revealed a similar neural representation between these two objective attributes and between the attribute and valuation. Moreover, the SPL tracked the subjective value integrated by the hyperbolic function. Probability-related brain activations in the inferior parietal lobule were associated with the variability in individual discounting rates. These findings provide novel insights into a similar neural representation of the two attributes during probabilistic decision-making and perhaps support the common neural coding of stimulus objective properties and subjective value in the field of probabilistic discounting.


Striatum-Centered Fiber Connectivity Is Associated with the Personality Trait of Cooperativeness.

  • Xuemei Lei‎ et al.
  • PloS one‎
  • 2016‎

Cooperativeness is an essential behavioral trait evolved to facilitate group living. Social and cognitive mechanisms involved in cooperation (e.g., motivation, reward encoding, action evaluation, and executive functions) are sub-served by the striatal-projected circuits, whose physical existence has been confirmed by animal studies, human postmortem studies, and in vivo human brain studies. The current study investigated the associations between Cooperativeness and fiber connectivities from the striatum to nine subcortical and cortical regions, including the amygdala, hippocampus, medial orbitofrontal cortex, lateral orbitofrontal cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, posterior cingulate cortex/retrosplenial cortex, dorsal cingulate cortex, and rostral cingulate cortex. Results showed that Cooperativeness was negatively correlated with fiber connectivity for the cognitive control system (from the dorsal caudate to the rostral cingulate cortex and ventrolateral prefrontal cortex), but not with fiber connectivity for the social cognitive system (e.g., connectivity with the medial prefrontal cortex and amygdala). These results partially supported Declerck et al.'s (2013) cognitive neural model of the role of cognitive control and social cognition in cooperation.


Resting-state functional connectivity and reading abilities in first and second languages.

  • Mingxia Zhang‎ et al.
  • NeuroImage‎
  • 2014‎

An intriguing discovery in recent years is that resting-state functional connectivity (RSFC) is associated with cognitive performance. The current study investigated whether RSFC within the reading network was correlated with Chinese adults' reading abilities in their native language (L1, Chinese) and second language (L2, English). Results showed that RSFC within the reading network was positively correlated to reading abilities in L1 and L2, and RSFC between reading areas and the default network was negatively correlated to reading abilities in L1 and L2. Further conjunction and contrast analyses revealed that L1 and L2 shared similar RSFC correlates including connectivities between the areas for visual analysis (e.g., bilateral posterior fusiform gyrus, lateral occipital cortices, and right superior parietal lobules) and those for phonological processing (e.g., bilateral precentral gyri and postcentral gyrus, Wernicke's area). These results indicate that RSFC is a potential neural marker for reading abilities in both L1 and L2, with important theoretical implications for reading in L1 and L2.


Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach.

  • Chunhui Chen‎ et al.
  • PloS one‎
  • 2011‎

Traditional behavioral genetic studies (e.g., twin, adoption studies) have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL) with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation) to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system) genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP). 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth) that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001). Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional behavioral genetics and the lack of reproducible genetic effects observed currently from molecular genetic studies.


Native language experience shapes neural basis of addressed and assembled phonologies.

  • Leilei Mei‎ et al.
  • NeuroImage‎
  • 2015‎

Previous studies have suggested differential engagement of addressed and assembled phonologies in reading Chinese and alphabetic languages (e.g., English) and the modulatory role of native language in learning to read a second language. However, it is not clear whether native language experience shapes the neural mechanisms of addressed and assembled phonologies. To address this question, we trained native Chinese and native English speakers to read the same artificial language (based on Korean Hangul) either through addressed (i.e., whole-word mapping) or assembled (i.e., grapheme-to-phoneme mapping) phonology. We found that, for both native Chinese and native English speakers, addressed phonology relied on the regions in the ventral pathway, whereas assembled phonology depended on the regions in the dorsal pathway. More importantly, we found that the neural mechanisms of addressed and assembled phonologies were shaped by native language experience. Specifically, one key region for addressed phonology (i.e., the left middle temporal gyrus) showed greater activation for addressed phonology in native Chinese speakers, while one key region for assembled phonology (i.e., the left supramarginal gyrus) showed more activation for assembled phonology in native English speakers. These results provide direct neuroimaging evidence for the effect of native language experience on the neural mechanisms of phonological access in a new language and support the assimilation-accommodation hypothesis.


Agency modulates the lateral and medial prefrontal cortex responses in belief-based decision making.

  • Gui Xue‎ et al.
  • PloS one‎
  • 2013‎

Many real-life decisions in complex and changing environments are guided by the decision maker's beliefs, such as her perceived control over decision outcomes (i.e., agency), leading to phenomena like the "illusion of control". However, the neural mechanisms underlying the "agency" effect on belief-based decisions are not well understood. Using functional imaging and a card guessing game, we revealed that the agency manipulation (i.e., either asking the subjects (SG) or the computer (CG) to guess the location of the winning card) not only affected the size of subjects' bets, but also their "world model" regarding the outcome dependency. Functional imaging results revealed that the decision-related activation in the lateral and medial prefrontal cortex (PFC) was significantly modulated by agency and previous outcome. Specifically, these PFC regions showed stronger activation when subjects made decisions after losses than after wins under the CG condition, but the pattern was reversed under the SG condition. Furthermore, subjects with high external attribution of negative events were more affected by agency at the behavioral and neural levels. These results suggest that the prefrontal decision-making system can be modulated by abstract beliefs, and are thus vulnerable to factors such as false agency and attribution.


Long-term experience with Chinese language shapes the fusiform asymmetry of English reading.

  • Leilei Mei‎ et al.
  • NeuroImage‎
  • 2015‎

Previous studies have suggested differential engagement of the bilateral fusiform gyrus in the processing of Chinese and English. The present study tested the possibility that long-term experience with Chinese language affects the fusiform laterality of English reading by comparing three samples: Chinese speakers, English speakers with Chinese experience, and English speakers without Chinese experience. We found that, when reading words in their respective native language, Chinese and English speakers without Chinese experience differed in functional laterality of the posterior fusiform region (right laterality for Chinese speakers, but left laterality for English speakers). More importantly, compared with English speakers without Chinese experience, English speakers with Chinese experience showed more recruitment of the right posterior fusiform cortex for English words and pseudowords, which is similar to how Chinese speakers processed Chinese. These results suggest that long-term experience with Chinese shapes the fusiform laterality of English reading and have important implications for our understanding of the cross-language influences in terms of neural organization and of the functions of different fusiform subregions in reading.


Artificial language training reveals the neural substrates underlying addressed and assembled phonologies.

  • Leilei Mei‎ et al.
  • PloS one‎
  • 2014‎

Although behavioral and neuropsychological studies have suggested two distinct routes of phonological access, their neural substrates have not been clearly elucidated. Here, we designed an artificial language (based on Korean Hangul) that can be read either through addressed (i.e., whole word mapping) or assembled (i.e., grapheme-to-phoneme mapping) phonology. Two matched groups of native English-speaking participants were trained in one of the two conditions, one hour per day for eight days. Behavioral results showed that both groups correctly named more than 90% of the trained words after training. At the neural level, we found a clear dissociation of the neural pathways for addressed and assembled phonologies: There was greater involvement of the anterior cingulate cortex, posterior cingulate cortex, right orbital frontal cortex, angular gyrus and middle temporal gyrus for addressed phonology, but stronger activation in the left precentral gyrus/inferior frontal gyrus and supramarginal gyrus for assembled phonology. Furthermore, we found evidence supporting the strategy-shift hypothesis, which postulates that, with practice, reading strategy shifts from assembled to addressed phonology. Specifically, compared to untrained words, trained words in the assembled phonology group showed stronger activation in the addressed phonology network and less activation in the assembled phonology network. Our results provide clear brain-imaging evidence for the dual-route models of reading.


Altered dynamics between neural systems sub-serving decisions for unhealthy food.

  • Qinghua He‎ et al.
  • Frontiers in neuroscience‎
  • 2014‎

Using BOLD functional magnetic resonance imaging (fMRI) techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT), and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14 to 21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG), and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex. These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: