2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Oscarella lobularis (Homoscleromorpha, Porifera) Regeneration: Epithelial Morphogenesis and Metaplasia.

  • Alexander V Ereskovsky‎ et al.
  • PloS one‎
  • 2015‎

Sponges are known to possess remarkable reconstitutive and regenerative abilities ranging from common wounding or body part regeneration to more impressive re-building of a functional body from dissociated cells. Among the four sponge classes, Homoscleromorpha is notably the only sponge group to possess morphologically distinct basement membrane and specialized cell-junctions, and is therefore considered to possess true epithelia. The consequence of this peculiar organization is the predominance of epithelial morphogenesis during ontogenesis of these sponges. In this work we reveal the underlying cellular mechanisms used during morphogenesis accompanying ectosome regeneration in the homoscleromorph sponge model: Oscarella lobularis. We identified three main sources of novel exopinacoderm during the processes of its regeneration and the restoration of functional peripheral parts of the aquiferous system in O. lobularis: (1) intact exopinacoderm surrounding the wound surface, (2) the endopinacoderm from peripheral exhalant and inhalant canals, and (3) the intact choanoderm found on the wound surface. The basic morphogenetic processes during regeneration are the spreading and fusion of epithelial sheets that merge into one continuous epithelium. Transdifferentiation of choanocytes into exopinacocytes is also present. Epithelial-mesenchymal transition is absent during regeneration. Moreover, we cannot reveal any other morphologically distinct pluripotent cells. In Oscarella, neither blastema formation nor local dedifferentiation and proliferation have been detected, which is probably due to the high morphogenetic plasticity of the tissue. Regeneration in O. lobularis goes through cell transdifferentiation and through the processes, when lost body parts are replaced by the remodeling of the remaining tissue. Morphogenesis during ectosome regeneration in O. lobularis is correlated with its true epithelial organization. Knowledge of the morphological basis of morphogenesis during Oscarella regeneration could have important implications for our understanding of the diversity and evolution of regeneration mechanisms in metazoans, and is a strong basis for future investigations with molecular-biological approaches.


Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha).

  • Eve Gazave‎ et al.
  • PloS one‎
  • 2010‎

Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.


ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae).

  • Quentin Schenkelaars‎ et al.
  • Developmental biology‎
  • 2016‎

The Rho associated coiled-coil protein kinase (ROCK) plays crucial roles in development across bilaterian animals. The fact that the Rho/Rock pathway is required to initiate epithelial morphogenesis and thus to establish body plans in bilaterians makes this conserved signaling pathway key for studying the molecular mechanisms that may control early development of basally branching metazoans. The purpose of this study was to evaluate whether or not the main components of this signaling pathway exist in sponges, and if present, to investigate the possible role of the regulatory network in an early branching non-bilaterian species by evaluating ROCK function during Ephydatia muelleri development. Molecular phylogenetic analyses and protein domain predictions revealed the existence of Rho/Rock components in all studied poriferan lineages. Binding assays revealed that both Y-27632 and GSK429286A are capable of inhibiting Em-ROCK activity in vitro. Treatment with both drugs leads to impairment of growth and formation of the basal pinacoderm layer in the developing sponge. Furthermore, inhibition of Em-Rock prevents the establishment of a functional aquiferous system, including the absence of an osculum. In contrast, no effect of ROCK inhibition was observed in juvenile sponges that already possess a fully developed and functional aquiferous system. Thus, the Rho/Rock pathway appears to be essential for the proper development of the freshwater sponge, and may play a role in various cell behaviors (e.g. cell proliferation, cell adhesion and cell motility). Taken together, these data are consistent with an ancestral function of Rho/Rock signaling in playing roles in early developmental processes and may provide a new framework to study the interaction between Wnt signaling and the Rho/Rock pathway.


The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes.

  • Sébastien Santini‎ et al.
  • BMC biology‎
  • 2023‎

Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera.


Phylogenomics revives traditional views on deep animal relationships.

  • Hervé Philippe‎ et al.
  • Current biology : CB‎
  • 2009‎

The origin of many of the defining features of animal body plans, such as symmetry, nervous system, and the mesoderm, remains shrouded in mystery because of major uncertainty regarding the emergence order of the early branching taxa: the sponge groups, ctenophores, placozoans, cnidarians, and bilaterians. The "phylogenomic" approach [1] has recently provided a robust picture for intrabilaterian relationships [2, 3] but not yet for more early branching metazoan clades. We have assembled a comprehensive 128 gene data set including newly generated sequence data from ctenophores, cnidarians, and all four main sponge groups. The resulting phylogeny yields two significant conclusions reviving old views that have been challenged in the molecular era: (1) that the sponges (Porifera) are monophyletic and not paraphyletic as repeatedly proposed [4-9], thus undermining the idea that ancestral metazoans had a sponge-like body plan; (2) that the most likely position for the ctenophores is together with the cnidarians in a "coelenterate" clade. The Porifera and the Placozoa branch basally with respect to a moderately supported "eumetazoan" clade containing the three taxa with nervous system and muscle cells (Cnidaria, Ctenophora, and Bilateria). This new phylogeny provides a stimulating framework for exploring the important changes that shaped the body plans of the early diverging phyla.


Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis.

  • Amélie Vernale‎ et al.
  • BMC ecology and evolution‎
  • 2021‎

The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell-cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention.


The Conservation of the Germline Multipotency Program, from Sponges to Vertebrates: A Stepping Stone to Understanding the Somatic and Germline Origins.

  • Laura Fierro-Constaín‎ et al.
  • Genome biology and evolution‎
  • 2017‎

The germline definition in metazoans was first based on few bilaterian models. As a result, gene function interpretations were often based on phenotypes observed in those models and led to the definition of a set of genes, considered as specific of the germline, named the "germline core". However, some of these genes were shown to also be involved in somatic stem cells, thus leading to the notion of germline multipotency program (GMP). Because Porifera and Ctenophora are currently the best candidates to be the sister-group to all other animals, the comparative analysis of gene contents and functions between these phyla, Cnidaria and Bilateria is expected to provide clues on early animal evolution and on the links between somatic and germ lineages. Our present bioinformatic analyses at the metazoan scale show that a set of 18 GMP genes was already present in the last common ancestor of metazoans and indicate more precisely the evolution of some of them in the animal lineage. The expression patterns and levels of 11 of these genes in the homoscleromorph sponge Oscarella lobularis show that they are expressed throughout their life cycle, in pluri/multipotent progenitors, during gametogenesis, embryogenesis and during wound healing. This new study in a nonbilaterian species reinforces the hypothesis of an ancestral multipotency program.


Systematics and molecular phylogeny of the family oscarellidae (homoscleromorpha) with description of two new oscarella species.

  • Eve Gazave‎ et al.
  • PloS one‎
  • 2013‎

The family Oscarellidae is one of the two families in the class Homoscleromorpha (phylum Porifera) and is characterized by the absence of a skeleton and the presence of a specific mitochondrial gene, tatC. This family currently encompasses sponges in two genera: Oscarella with 17 described species and Pseudocorticium with one described species. Although sponges in this group are relatively well-studied, phylogenetic relationships among members of Oscarellidae and the validity of genus Pseudocorticium remain open questions. Here we present a phylogenetic analysis of Oscarellidae using four markers (18S rDNA, 28S rDNA, atp6, tatC), and argue that it should become a mono-generic family, with Pseudocorticium being synonymized with Oscarella, and with the transfer of Pseudocorticium jarrei to Oscarella jarrei. We show that the genus Oscarella can be subdivided into four clades, each of which is supported by either a small number of morphological characters or by molecular synapomorphies. In addition, we describe two new species of Oscarella from Norwegian fjords: O. bergenensis sp. nov. and O. nicolae sp. nov., and we compare their morphology, anatomy, and cytology with other species in this genus. Internal anatomical characters are similar in both species, but details of external morphology and particularly of cytological characters provide diagnostic features. Our study also confirms that O. lobularis and O. tuberculata are two distinct polychromic sibling species. This study highlights the difficulties of species identification in skeleton-less sponges and, more generally, in groups where morphological characters are scarce. Adopting a multi-marker approach is thus highly suitable for these groups.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: