Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 863 papers

Thermopower scaling in conducting polymers.

  • Morgan Lepinoy‎ et al.
  • Scientific reports‎
  • 2020‎

By directly converting heat into electricity, thermoelectric effects provide a unique physical process from heat waste to energy harvesting. Requiring the highest possible power factor defined as α2σ, with the thermopower α and the electrical conductivity σ, such a technology necessitates the best knowledge of transport phenomena in order to be able to control and optimize both α and σ. While conducting polymers have already demonstrated their great potentiality with enhanced thermoelectric performance, the full understanding of the transport mechanisms in these compounds is still lacking. Here we show that the thermoelectric properties of one of the most promising conducting polymer, the poly(3,4-ethylenedioxythiophene) doped with tosylate ions (PEDOT-Tos), follows actually a very generic behavior with a scaling relation as α ∝ σ-1/4. Whereas conventional transport theories have failed to explain such an exponent, we demonstrate that it is in fact a characteristic of massless pseudo-relativistic quasiparticles, namely Dirac fermions, scattered by unscreened ionized impurities.


Anticancer polymers designed for killing dormant prostate cancer cells.

  • Haruko Takahashi‎ et al.
  • Scientific reports‎
  • 2019‎

The discovery of anticancer therapeutics effective in eliminating dormant cells is a significant challenge in cancer biology. Here, we describe new synthetic polymer-based anticancer agents that mimic the mode of action of anticancer peptides. These anticancer polymers developed here are designed to capture the cationic, amphiphilic traits of anticancer peptides. The anticancer polymers are designed to target anionic lipids exposed on the cancer cell surfaces and act by disrupting the cancer cell membranes. Because the polymer mechanism is not dependent on cell proliferation, we hypothesized that the polymers were active against dormant cancer cells. The polymers exhibited cytotoxicity to proliferating prostate cancer. Importantly, the polymer killed dormant prostate cancer cells that were resistant to docetaxel. This study demonstrates a new approach to discover novel anticancer therapeutics.


Light-evoked hyperpolarization and silencing of neurons by conjugated polymers.

  • Paul Feyen‎ et al.
  • Scientific reports‎
  • 2016‎

The ability to control and modulate the action potential firing in neurons represents a powerful tool for neuroscience research and clinical applications. While neuronal excitation has been achieved with many tools, including electrical and optical stimulation, hyperpolarization and neuronal inhibition are typically obtained through patch-clamp or optogenetic manipulations. Here we report the use of conjugated polymer films interfaced with neurons for inducing a light-mediated inhibition of their electrical activity. We show that prolonged illumination of the interface triggers a sustained hyperpolarization of the neuronal membrane that significantly reduces both spontaneous and evoked action potential firing. We demonstrate that the polymeric interface can be activated by either visible or infrared light and is capable of modulating neuronal activity in brain slices and explanted retinas. These findings prove the ability of conjugated polymers to tune neuronal firing and suggest their potential application for the in-vivo modulation of neuronal activity.


Engineering and use of proteinoid polymers and nanocapsules containing agrochemicals.

  • Elisheva Sasson‎ et al.
  • Scientific reports‎
  • 2020‎

To address global challenges such as population growth and climate change, introduction of new technologies and innovations in agriculture are paramount. Polymer-based formulations of agrochemicals have received much attention in recent years, and there is strong motivation to develop agrochemicals that are not harmful to the environment. Proteinoid polymers are produced by thermal step-growth polymerization of natural and unnatural amino acids. Under suitable gentle conditions, the proteinoid polymers may self-assemble to form nano-sized hollow proteinoid nanoparticles (NPs) of a relatively narrow size distribution. Agrochemical molecules may be encapsulated within these hollow proteinoid NPs, integrated in the crude proteinoid shell, or bound covalently/physically to the NP surface. In the present manuscript we prepared and characterized four model proteinoid polymers and NPs: P(KEf), P(KF), P(EWH-PLLA) and P(KWH-PLLA), where Ef denotes the unnatural herbicidal amino acid glufosinate. The NPs were fluorescently labeled and loaded with agrochemicals such as the plant hormone auxin. In addition, the NP surface was hydrophobized by covalent conjugation of dodecyl aldehyde via its surface primary amine groups. Following treatment of the plants with the different fluorescent-labeled NPs, fluorescent microscopic techniques enabled to localize the NPs and observe the accumulation in the plant's vascular system. Next, using genetically modified plants, which express fluorescent protein and are responsive to the level of auxin, we demonstrated the possibility to deliver encapsulated agrochemicals into cells. We also illustrated that the proteinoid NPs are non-toxic to human umbilical vein endothelial cells, and apart from P(KEf) also to lettuce plants.


Salmonid polysialyltransferases to generate a variety of sialic acid polymers.

  • Mathieu Decloquement‎ et al.
  • Scientific reports‎
  • 2023‎

The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.


Synthesis, characterization, and biodegradation studies of new cellulose-based polymers.

  • F E Tabaght‎ et al.
  • Scientific reports‎
  • 2023‎

New cellulose carbamates and cellulose acetate carbamates were prepared by classical addition reaction of isocyanates with alcohols. A Telomerization technique was used to make the grafted molecules strongly anchored and more hydrophobic. These molecules were grafted into cellulose and CA chains, respectively. The structures of the synthesized derivatives were confirmed using Nuclear Magnetic Resonance Spectroscopy, Fourier Transform Infrared and Thermogravimetric Analysis, and their solubility phenomenon was also established, and the carbamate derivatives showed better solubility compared to cellulose. Their ability to biodegrade was investigated, and it was concluded that Cell-P1 and CA-P1 derivatives are more biodegradable than the other samples. These results suggest that the resulting compounds can be used effectively in many useful industrial fields, for instance, eco-friendly food packaging, domains that use materials that are environmentally friendly and sustainable and the development of green chemistry.


Generation of ribosome imprinted polymers for sensitive detection of translational responses.

  • Helen A King‎ et al.
  • Scientific reports‎
  • 2017‎

Whilst the profiling of the transcriptome and proteome even of single-cells becomes feasible, the analysis of the translatome, which refers to all messenger RNAs (mRNAs) engaged with ribosomes for protein synthesis, is still an elaborate procedure requiring millions of cells. Herein, we report the generation and use of "smart materials", namely molecularly imprinted polymers (MIPs) to facilitate the isolation of ribosomes and translated mRNAs from merely 1,000 cells. In particular, we show that a hydrogel-based ribosome imprinted polymer could recover ribosomes and associated mRNAs from human, simian and mice cellular extracts, but did not selectively enrich yeast ribosomes, thereby demonstrating selectivity. Furthermore, ribosome imprinted polymers enabled the sensitive measurement of an mRNA translational regulatory event, requiring 1,000-fold less cells than current methodologies. These results provide first evidence for the suitability of MIPs to selectively recover ribonucleoprotein complexes such as ribosomes, founding a novel means for sensitive detection of gene regulation.


Cell type specific adhesion to surfaces functionalised by amine plasma polymers.

  • P Černochová‎ et al.
  • Scientific reports‎
  • 2020‎

Our previously-obtained impressive results of highly increased C2C12 mouse myoblast adhesion to amine plasma polymers (PPs) motivated current detailed studies of cell resistance to trypsinization, cell proliferation, motility, and the rate of attachment carried out for fibroblasts (LF), keratinocytes (HaCaT), rat vascular smooth muscle cells (VSMC), and endothelial cells (HUVEC, HSVEC, and CPAE) on three different amine PPs. We demonstrated the striking difference in the resistance to trypsin treatment between endothelial and non-endothelial cells. The increased resistance observed for the non-endothelial cell types was accompanied by an increased rate of cellular attachment, even though spontaneous migration was comparable to the control, i.e., to the standard cultivation surface. As demonstrated on LF fibroblasts, the resistance to trypsin was similar in serum-supplemented and serum-free media, i.e., medium without cell adhesion-mediating proteins. The increased cell adhesion was also confirmed for LF cells by an independent technique, single-cell force spectroscopy. This method, as well as the cell attachment rate, proved the difference among the plasma polymers with different amounts of amine groups, but other investigated techniques could not reveal the differences in the cell behaviour on different amine PPs. Based on all the results, the increased resistance to trypsinization of C2C12, LF, HaCaT, and VSMC cells on amine PPs can be explained most probably by a non-specific cell adhesion such as electrostatic interaction between the cells and amine groups on the material surface, rather than by the receptor-mediated adhesion through serum-derived proteins adsorbed on the PPs.


Alignment of liquid crystals by polymers with residual amounts of solvents.

  • Alexander M Parshin‎ et al.
  • Scientific reports‎
  • 2017‎

The homogeneous nematic layers in liquid crystal cells with treated surfaces are affected by orientational transitions in the electric, magnetic, or temperature fields. The liquid crystal structures formed on solid or liquid surfaces find limited application in identifying the liquid-crystal states by the textures observed in polarized light. The use of surfaces prepared from polymer solutions makes it possible to significantly broaden the range of application of the liquid crystal structures. We investigate the structures with the continuous transformation of the nematic director orientation from radial to planar, which were formed by the polycarbonate surface in the presence of different residual solvents. The structures contained the disclination lines that aligned either by a plate rubbed to provide the homogeneous planar orientation in the LC layer or by a magnetic field applied along the polycarbonate film during the structure formation. The orientational transitions caused by surface treatment, temperature, and electric or magnetic fields in these structures are observed. The comparison of temperature critical distance as well as electric and magnetic coherence lengths with equilibrium length calculated from the expression for the free energy of the nematic is performed. The electro-optical characteristics of the nematic structures are obtained.


In vitro blood cell viability profiling of polymers used in molecular assembly.

  • Hyejoong Jeong‎ et al.
  • Scientific reports‎
  • 2017‎

Biocompatible polymers have been extensively applied to molecular assembly techniques on a micro- and nanoscale to miniaturize functional devices for biomedical uses. However, cytotoxic assessments of developed devices are prone to partially focus on non-specific cells or cells associated with the specific applications. Thereby, since toxicity is dependent on the type of cells and protocols, we do not fully understand the relative toxicities of polymers. Additionally, we need to ensure the blood cell biocompatibility of developed devices prior to that of targeted cells because most of the devices contact the blood before reaching the targeted regions. Motivated by this issue, we focused on screening cytotoxicity of polymers widely used for the layer-by-layer assembly technique using human blood cells. Cytotoxicity at the early stage was investigated on twenty types of polymers (positively charged, negatively charged, or neutral) and ten combination forms via hemolysis, cell viability, and AnnexinV-FITC/PI staining assays. We determined their effects on the cell membrane depending on their surface chemistry by molecular dynamics simulations. Furthermore, the toxicity of LbL-assembled nanofilms was assessed by measuring cell viability. Based on this report, researchers can produce nanofilms that are better suited for drug delivery and biomedical applications by reducing the possible cytotoxicity.


Organization of Nucleotides in Different Environments and the Formation of Pre-Polymers.

  • Sebastian Himbert‎ et al.
  • Scientific reports‎
  • 2016‎

RNA is a linear polymer of nucleotides linked by a ribose-phosphate backbone. Polymerization of nucleotides occurs in a condensation reaction in which phosphodiester bonds are formed. However, in the absence of enzymes and metabolism there has been no obvious way for RNA-like molecules to be produced and then encapsulated in cellular compartments. We investigated 5'-adenosine monophosphate (AMP) and 5'-uridine monophosphate (UMP) molecules confined in multi-lamellar phospholipid bilayers, nanoscopic films, ammonium chloride salt crystals and Montmorillonite clay, previously proposed to promote polymerization. X-ray diffraction was used to determine whether such conditions imposed a degree of order on the nucleotides. Two nucleotide signals were observed in all matrices, one corresponding to a nearest neighbour distance of 4.6 Å attributed to nucleotides that form a disordered, glassy structure. A second, smaller distance of 3.4 Å agrees well with the distance between stacked base pairs in the RNA backbone, and was assigned to the formation of pre-polymers, i.e., the organization of nucleotides into stacks of about 10 monomers. Such ordering can provide conditions that promote the nonenzymatic polymerization of RNA strands under prebiotic conditions. Experiments were modeled by Monte-Carlo simulations, which provide details of the molecular structure of these pre-polymers.


Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities.

  • Ahmed A H Abdellatif‎ et al.
  • Scientific reports‎
  • 2021‎

The use of cellulosic polymers as efficient reducing, coating agents, and stabilizers in the formulation of silver nanoparticles (AgNPs) with antioxidant and antibacterial activity was investigated. AgNPs were synthesized using different cellulosic polymers, polyethylene glycol, and without polymers using tri-sodium citrate, for comparison. The yield, morphology, size, charge, in vitro release of silver ion, and physical stability of the resulting AgNPs were evaluated. Their antioxidant activity was measured as a scavenging percentage compared with ascorbic acid, while their antibacterial activity was evaluated against different strains of bacteria. The amount of AgNPs inside bacterial cells was quantified using an ICP-OES spectrometer, and morphological examination of the bacteria was performed after AgNPs internalization. Cellulosic polymers generated physically stable AgNPs without any aggregation, which remained physically stable for 3 months at 25.0 ± 0.5 and 4.0 ± 0.5 °C. AgNPs formulated using ethylcellulose (EC) and hydroxypropyl methylcellulose (HPMC) had significant (p ≤ 0.05; ANOVA/Tukey) antibacterial activities and lower values of MIC compared to methylcellulose (MC), PEG, and AgNPs without a polymeric stabilizer. Significantly (p ≤ 0.05; ANOVA/Tukey) more AgNPs-EC and AgNPs-HPMC were internalized in Escherichia coli cells compared to other formulations. Thus, cellulosic polymers show promise as polymers for the formulation of AgNPs with antioxidant and antibacterial activities.


Direct-current generators based on conductive polymers for self-powered flexible devices.

  • Yanfang Meng‎ et al.
  • Scientific reports‎
  • 2021‎

Direct-current generators, especially those based on the Schottky contacts between conductive polymers and metal electrodes, are efficient in converting mechanical stimuli into electrical energy. In contrast to triboelectric and piezoelectric generators, direct-current generators readily produce direct-current outputs and high currents that are crucial for integrating multiple energy-harvesting units in large scale and driving some types of devices. We are focusing on the relationship between Schottky barrier height and performance, systematically investigating the effects of various conductive polymers and electrodes on the outputs by both theoretical simulation and experiments. Tailoring the Schottky barrier height between conductive polymers and metal electrodes is demonstrated a significant approach to design the new DC generators. The preparation method of electrochemical deposition endows the generators flexibility, the linear relationship of current/voltage output vs. strain applied on the generators, combined with the large outputs offer advantages for the generator to work as flexible sensors. Furthermore, a mechanosensation-active matrix array based on direct-current generator for the strain monitoring demonstrated its promising prospects in flexible electronics. The direct-current generators with improved performance could serve as a stream new blood for versatile sensory systems and human-machine interactive interfaces.


Catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration.

  • Seokju Seo‎ et al.
  • Scientific reports‎
  • 2018‎

This work shows the potential of nickel (Ni) nanoparticles (NPs) stabilized by polymers for accelerating carbon dioxide (CO2) dissolution into saline aquifers. The catalytic characteristics of Ni NPs were investigated by monitoring changes in diameter of CO2 microbubbles. An increase in ionic strength considerably reduces an electrostatic repulsive force in pristine Ni NPs, thereby decreasing their catalytic potential. This study shows how cationic dextran (DEX), nonionic poly(vinyl pyrrolidone) (PVP), and anionic carboxy methylcellulose (CMC) polymers, the dispersive behaviors of Ni NPs can be used to overcome the negative impact of salinity on CO2 dissolution. The cationic polymer, DEX was less adsorbed onto NPs surfaces, thereby limiting the Ni NPs' catalytic activity. This behavior is due to a competition for Ni NPs' surface sites between the cation and DEX under high salinity. On the other hand, the non/anionic polymers, PVP and CMC could be relatively easily adsorbed onto anchoring sites of Ni NPs by the monovalent cation, Na+. Considerable dispersion of Ni NPs by an optimal concentration of the anionic polymers improved their catalytic capabilities even under unfavorable conditions for CO2 dissolution. This study has implications for enhancing geologic sequestration into deep saline aquifers for the purposes of mitigating atmospheric CO2 levels.


Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics.

  • Aslıhan Gökaltun‎ et al.
  • Scientific reports‎
  • 2019‎

Poly(dimethylsiloxane) (PDMS) is likely the most popular material for microfluidic devices in lab-on-a-chip and other biomedical applications. However, the hydrophobicity of PDMS leads to non-specific adsorption of proteins and other molecules such as therapeutic drugs, limiting its broader use. Here, we introduce a simple method for preparing PDMS materials to improve hydrophilicity and decrease non-specific protein adsorption while retaining cellular biocompatibility, transparency, and good mechanical properties without the need for any post-cure surface treatment. This approach utilizes smart copolymers comprised of poly(ethylene glycol) (PEG) and PDMS segments (PDMS-PEG) that, when blended with PDMS during device manufacture, spontaneously segregate to surfaces in contact with aqueous solutions and reduce the hydrophobicity without any added manufacturing steps. PDMS-PEG-modified PDMS samples showed contact angles as low as 23.6° ± 1° and retained this hydrophilicity for at least twenty months. Their improved wettability was confirmed using capillary flow experiments. Modified devices exhibited considerably reduced non-specific adsorption of albumin, lysozyme, and immunoglobulin G. The modified PDMS was biocompatible, displaying no adverse effects when used in a simple liver-on-a-chip model using primary rat hepatocytes. This PDMS modification method can be further applied in analytical separations, biosensing, cell studies, and drug-related studies.


Re-polarizing Myeloid-derived Suppressor Cells (MDSCs) with Cationic Polymers for Cancer Immunotherapy.

  • Wei He‎ et al.
  • Scientific reports‎
  • 2016‎

Our evolving understandings of cell-material interactions provide insights for using polymers to modulate cell behaviour that may lead to therapeutic applications. It is known that in certain cancers, myeloid-derived suppressor cells (MDSCs) play vital roles in promoting tumour progression, chiefly because of their 'alternatively activated' (or M2) phenotype that orchestrates immunosuppression. In this study, we demonstrated that two cationic polymers - cationic dextran (C-dextran) and polyethyleneimine (PEI) - could directly remodel these cells into an anti-tumour, 'classically activated' (or M1) phenotype, thereby stimulating these cells to express tumouricidal cytokines, reactivating the T cell functions, and prolonging the lifespan of the mice model. Our investigations with knock-out mice further indicate that the functions of these cationic polymers require the involvement of toll-like receptor 4-mediated signalling. Taken together, our study suggests that these cationic polymers can effectively and directly re-polarize MDSCs from an immunosuppressive characteristic to an anti-tumour phenotype, leading to successful restoration of immune surveillance in the tumour microenvironment and elimination of tumour cells. Our findings may have immediate impact on further development of polymer-based therapeutics for cancer immunotherapy.


Cytotoxicity of polymers intended for the extrusion-based additive manufacturing of surgical guides.

  • Felix Burkhardt‎ et al.
  • Scientific reports‎
  • 2022‎

Extrusion-based printing enables simplified and economic manufacturing of surgical guides for oral implant placement. Therefore, the cytotoxicity of a biocopolyester (BE) and a polypropylene (PP), intended for the fused filament fabrication of surgical guides was evaluated. For comparison, a medically certified resin based on methacrylic esters (ME) was printed by stereolithography (n = 18 each group). Human gingival keratinocytes (HGK) were exposed to eluates of the tested materials and an impedance measurement and a tetrazolium assay (MTT) were performed. Modulations in gene expression were analyzed by quantitative PCR. One-way ANOVA with post-hoc Tukey tests were applied. None of the materials exceeded the threshold for cytotoxicity (< 70% viability in MTT) according to ISO 10993-5:2009. The impedance-based cell indices for PP and BE, reflecting cell proliferation, showed little deviations from the control, while ME caused a reduction of up to 45% after 72 h. PCR analysis after 72 h revealed only marginal modulations caused by BE while PP induced a down-regulation of genes encoding for inflammation and apoptosis (p < 0.05). In contrast, the 72 h ME eluate caused an up-regulation of these genes (p < 0.01). All evaluated materials can be considered biocompatible in vitro for short-term application. However, long-term contact to ME might induce (pro-)apoptotic/(pro-)inflammatory responses in HGK.


Heparin Forms Polymers with Cell-free DNA Which Elongate Under Shear in Flowing Blood.

  • Joost C de Vries‎ et al.
  • Scientific reports‎
  • 2019‎

Heparin is a widely used anticoagulant which inhibits factor Xa and thrombin through potentiation of antithrombin. We recently identified that the nucleic acid stain SYTOX reacts with platelet polyphosphate due to molecular similarities, some of which are shared by heparin. We attempted to study heparin in flowing blood by live-cell fluorescence microscopy, using SYTOX for heparin visualisation. Immunostaining was performed with monoclonal antibodies directed against various heparin-binding proteins. In addition, we studied modulation of heparin activity in coagulation assays, as well its effects on fibrin formation under flow in recalcified whole blood. We found that SYTOX-positive polymers appear in heparinised blood under flow. These polymers typically associate with platelet aggregates and their length (reversibly) increases with shear rate. Immunostaining revealed that of the heparin-binding proteins assessed, they only contain histones. In coagulation assays and flow studies on fibrin formation, we found that addition of exogenous histones reverses the anticoagulant effects of heparin. Furthermore, the polymers do not appear in the presence of DNase I, heparinase I/III, or the heparin antidote protamine. These findings suggest that heparin forms polymeric complexes with cell-free DNA in whole blood through a currently unidentified mechanism.


Materials informatics approach using domain modelling for exploring structure-property relationships of polymers.

  • Koki Hara‎ et al.
  • Scientific reports‎
  • 2022‎

In the development of polymer materials, it is an important issue to explore the complex relationships between domain structure and physical properties. In the domain structure analysis of polymer materials, 1H-static solid-state NMR (ssNMR) spectra can provide information on mobile, rigid, and intermediate domains. But estimation of domain structure from its analysis is difficult due to the wide overlap of spectra from multiple domains. Therefore, we have developed a materials informatics approach that combines the domain modeling ( http://dmar.riken.jp/matrigica/ ) and the integrated analysis of meta-information (the elements, functional groups, additives, and physical properties) in polymer materials. Firstly, the 1H-static ssNMR data of 120 polymer materials were subjected to a short-time Fourier transform to obtain frequency, intensity, and T2 relaxation time for domains with different mobility. The average T2 relaxation time of each domain is 0.96 ms for Mobile, 0.55 ms for Intermediate (Mobile), 0.32 ms for Intermediate (Rigid), and 0.11 ms for Rigid. Secondly, the estimated domain proportions were integrated with meta-information such as elements, functional group and thermophysical properties and was analyzed using a self-organization map and market basket analysis. This proposed method can contribute to explore structure-property relationships of polymer materials with multiple domains.


Automated Protein Biomarker Analysis: on-line extraction of clinical samples by Molecularly Imprinted Polymers.

  • Cecilia Rossetti‎ et al.
  • Scientific reports‎
  • 2017‎

Robust biomarker quantification is essential for the accurate diagnosis of diseases and is of great value in cancer management. In this paper, an innovative diagnostic platform is presented which provides automated molecularly imprinted solid-phase extraction (MISPE) followed by liquid chromatography-mass spectrometry (LC-MS) for biomarker determination using ProGastrin Releasing Peptide (ProGRP), a highly sensitive biomarker for Small Cell Lung Cancer, as a model. Molecularly imprinted polymer microspheres were synthesized by precipitation polymerization and analytical optimization of the most promising material led to the development of an automated quantification method for ProGRP. The method enabled analysis of patient serum samples with elevated ProGRP levels. Particularly low sample volumes were permitted using the automated extraction within a method which was time-efficient, thereby demonstrating the potential of such a strategy in a clinical setting.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: