Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Novel β-Hairpin Peptide from Marine Polychaeta with a High Efficacy against Gram-Negative Pathogens.

  • Victoria N Safronova‎ et al.
  • Marine drugs‎
  • 2022‎

In recent years, new antibiotics targeting multidrug resistant Gram-negative bacteria have become urgently needed. Therefore, antimicrobial peptides are considered to be a novel perspective class of antibacterial agents. In this study, a panel of novel BRICHOS-related β-hairpin antimicrobial peptides were identified in transcriptomes of marine polychaeta species. Two of them-abarenicin from Abarenicola pacifica and UuBRI-21 from Urechis unicinctus-possess strong antibacterial potential in vitro against a wide panel of Gram-negative bacteria including drug-resistant strains. Mechanism of action assays demonstrate that peptides disrupt bacterial and mammalian membrane integrity. Considering the stronger antibacterial potential and a low ability of abarenicin to be bound by components of serum, this peptide was selected for further modification. We conducted an alanine and arginine scanning of abarenicin by replacing individual amino acids and modulating hydrophobicity so as to improve its antibacterial potency and membrane selectivity. This design approach allowed us to obtain the Ap9 analog displaying a high efficacy in vivo in the mice septicemia and neutropenic mice peritonitis models. We demonstrated that abarenicin analogs did not significantly induce bacterial resistance after a four-week selection experiment and acted on different steps of the biofilm formation: (a) killing bacteria at their planktonic stage and preventing biofilm formation and (b) degrading pre-formed biofilm and killing embedded bacteria. The potent antibacterial and antibiofilm activity of the abarenicin analog Ap9 with its high efficacy in vivo against Gram-negative infection in mice models makes this peptide an attractive candidate for further preclinical investigation.


Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta.

  • Pavel V Panteleev‎ et al.
  • Marine drugs‎
  • 2020‎

Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play a key role in host defense. Among the most active and stable under physiological conditions AMPs are the peptides of animal origin that adopt a β-hairpin conformation stabilized by disulfide bridges. In this study, a novel BRICHOS-domain related AMP from the marine polychaeta Capitella teleta, named capitellacin, was produced as the recombinant analogue and investigated. The mature capitellacin exhibits high homology with the known β-hairpin AMP family-tachyplesins and polyphemusins from the horseshoe crabs. The β-hairpin structure of the recombinant capitellacin was proved by CD and NMR spectroscopy. In aqueous solution the peptide exists as monomeric right-handed twisted β-hairpin and its structure does not reveal significant amphipathicity. Moreover, the peptide retains this conformation in membrane environment and incorporates into lipid bilayer. Capitellacin exhibits a strong antimicrobial activity in vitro against a wide panel of bacteria including extensively drug-resistant strains. In contrast to other known β-hairpin AMPs, this peptide acts apparently via non-lytic mechanism at concentrations inhibiting bacterial growth. The molecular mechanism of the peptide antimicrobial action does not seem to be related to the inhibition of bacterial translation therefore other molecular targets may be assumed. The reduced cytotoxicity against human cells and high antibacterial cell selectivity as compared to tachyplesin-1 make it an attractive candidate compound for an anti-infective drug design.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: