Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Resveratrol induces p53 in colorectal cancer through SET7/9.

  • Zhonglun Liu‎ et al.
  • Oncology letters‎
  • 2019‎

Resveratrol is one of the most promising phytoalexins for use as an anti-cancer agent, which is present in the skin of red grapes and berries. Resveratrol has been demonstrated to modulate a number of signalling pathways that are involved in carcinogenesis. In the present study, the function of resveratrol as a pro-apoptotic agent in colorectal cancer cell lines, including HCT116, CO115 and SW48, was investigated. The results revealed that resveratrol supressed cell viability. Additionally, resveratrol enhanced the expression of tumour protein p53 (p53) and p53 target genes, including Bcl2 associated X, apoptosis regulator and Bcl2 binding component 3 that have a pivotal role in p53-dependent apoptosis. Furthermore, treating cells with resveratrol upregulated SET domain containing lysine methyltransferase 7/9 (SET7/9) expression, which positively regulates p53 through its mono-methylation at lysine 372, compared with untreated cells. Furthermore, treating cells with resveratrol induced the expression of apoptotic markers including cleaved caspase-3 and poly (ADP-ribose) polymerases (PARP) compared with untreated cells. However, the genetic knockdown of SET7/9 by short hairpin RNA attenuated the resveratrol-driven overexpression of p53, cleaved caspase-3 and PARP. Collectively, these results reveal the molecular mechanisms by which resveratrol induces p53 stability in colon cancer that results in the activation of p53-mediated apoptosis.


Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro.

  • Yuying Fan‎ et al.
  • Oncology letters‎
  • 2021‎

As an anti-diabetic drug, metformin has been demonstrated to exhibit antitumor effects. However, the mechanisms involved in decreasing tumor formation, including canine mammary gland tumors (CMGTs), are not well elucidated. The aim of the present study was to evaluate the ability of metformin to induce apoptosis and cell cycle arrest in CMGT cells, as well as identifying the pathways underlying these effects. Cell viability was assessed by Cell Counting Kit-8 analysis following treating with metformin. Subsequently, apoptosis and cell cycle progression were assessed by flow cytometry, and the expression of associated proteins was examined. Expression levels of classical AMP-activated protein kinase (AMPK), protein kinase B (AKT), mechanistic target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were then investigated using western blot analysis. Metformin inhibited the proliferation of CHMm cells in a concentration-dependent manner. Specifically, metformin induced cell cycle arrest in the G0/G1 phases, accompanied by increased expression of p21 and p27, and decreased expression of cyclin D1 and cyclin-dependent kinase 4. Marked levels of apoptosis were observed in CHMm cells alongside the activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. Also, the level of Bcl-2 was decreased, and that of Bax was increased. The expression of associated signaling molecules revealed that metformin markedly increased the phosphorylation of AMPK in CHMm cells, and decreased the levels of phosphorylated (p-)AKT, p-mTOR and p-4E-BP1, while Compound C reversed these changes. These findings demonstrated that metformin may be a potential therapeutic agent for CMGTs, acting via the AMPK/AKT/mTOR signaling pathway.


Increased cell apoptosis in human lung adenocarcinoma and in vivo tumor growth inhibition by RBM10, a tumor suppressor gene.

  • Yunxi Ji‎ et al.
  • Oncology letters‎
  • 2017‎

Tumor suppressor genes are frequently deleted or mutated in lung cancer. The RNA-binding motif protein 10 (RBM10) gene has the ability to suppress tumor activity, but the role of RBM10 during the development of lung cancer has yet to be elucidated. The current study investigated the expression levels of RBM10 in non-tumor and tumor tissues obtained from patients with adenocarcinoma using reverse transcription-polymerase chain reaction and western blot analysis, and identified a reduction in RBM10 expression in lung tumor tissue. To investigate the in vitro and in vivo function of RBM10, A549 human non-small cell lung cancer cells were transfected with the pcDNA-RBM10 vector. Flow cytometry was used to analyze the levels of apoptosis in the transfected cells. Western blot analysis was used to evaluate the expression of B-cell lymphoma 2 (Bcl-2), cleaved caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP) proteins in A549 cells and tissues from the A549 xenograft Bagg Albino coat (BALB/c) nude mice model. RBM10 mRNA levels were significantly decreased in adenocarcinoma cells, but not in the non-tumor tissues. The A549 cells and tumor tissues exhibited significant growth inhibition following transfection with the pcDNA-RBM10 vector, which was determined using a cell proliferation assay. Flow cytometry analysis of cells stained with Annexin V/propidium iodide indicated that the overexpression of RBM10 induced apoptosis in A549 cells. The present study demonstrated that the expression levels of Bcl-2 protein were decreased and the expression levels of cleaved caspase-3, caspase-9 and PARP proteins were significantly increased in the A549 cells and cells from ex vivo tumor tissues that were injected with RBM10 vector-containing Salmonella enterica subspecies enterica serovar typhimurium. Notably, the current study identified that the accumulated and stable overexpression of RBM10 in the xenograft BALB/c nude mice model significantly inhibited the tumor growth rate. These results may provide novel insights into the use of RBM10 for lung cancer diagnosis and therapy.


Knockdown of HMGN5 increases the chemosensitivity of human urothelial bladder cancer cells to cisplatin by targeting PI3K/Akt signaling.

  • Yu Gan‎ et al.
  • Oncology letters‎
  • 2017‎

High-mobility group nucleosome-binding domain 5 (HMGN5) is the latest member of the HMGN family of proteins. Numerous studies have confirmed the carcinogenic role of HMGN5 in cancer, but its function in the regulation of chemosensitivity is largely unknown and controversial. A previous study by the authors of the present study demonstrated that HMGN5 contributes to the progression of urothelial bladder cancer (UBC) through regulating the expression of E-cadherin and vascular endothelial growth factor (VEGF)-C, which are associated with the sensitivity of tumor cells to cisplatin. Therefore, the present study aimed to elucidate the mechanisms underlying the regulation of HMGN5 and investigate the involvement of HMGN5 in cisplatin treatment. The results of the present study revealed that HMGN5 is able to positively regulate the expression of phosphorylated (p-)Akt in UBC cells. In addition, HMGN5 expression was negatively associated with the response of UBC cells to cisplatin. The findings indicated that HMGN5 may be a potential therapeutic target of cisplatin treatment, since cisplatin treatment reduced HMGN5 expression in a dose-dependent manner. It was also confirmed that the knockdown of HMGN5 decreased the viability, colony formation and invasion of 5637 cells but increased apoptosis under cisplatin treatment. The changes caused by HMGN5 knockdown in 5637 cells were able to be reversed by treatment with insulin-like growth factor-1 (IGF-1), which is a phosphoinositide 3-kinase (PI3K)/Akt signaling activator. Additionally, with the decreased expression of HMGN5, the expression of p-Akt, slug, E-cadherin and VEGF-C was subsequently inhibited. By contrast, the expression of cytochrome c, cleaved-caspase-3 and cleaved-poly ADP ribose polymerase was increased following HMGN5 knockdown. Consistently, these changes in protein expression were able to be reversed by IGF-1 treatment. In conclusion, findings from the in vitro experiments indicate that HMGN5 may a target of cisplatin treatment and that the inhibition of HMGN5 increases the chemosensitivity of UBC cells by inhibiting PI3K/Akt signaling.


Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways.

  • Yi-Shih Ma‎ et al.
  • Oncology letters‎
  • 2018‎

Oral cancer is a cause of cancer-associated mortality worldwide and the treatment of oral cancer includes radiation, surgery and chemotherapy. Quercetin is a component from natural plant products and it has been demonstrated that quercetin is able to induce cytotoxic effects through induction of cell apoptosis in a number of human cancer cell lines. However, there is no available information to demonstrate that quercetin is able to induce apoptosis in human oral cancer cells. In the present study, the effect of quercetin on the cell death via the induction of apoptosis in human oral cancer SAS cells was investigated using flow cytometry, Annexin V/propidium iodide (PI) double staining, western blotting and confocal laser microscopy examination, to test for cytotoxic effects at 6-48 h after treatment with quercetin. The rate of cell death increased with the duration of quercetin treatment based on the results of a cell viability assay, increased Annexin V/PI staining, increased reactive oxygen species and Ca2+ production, decreased the levels of mitochondrial membrane potential (ΔΨm), increased proportion of apoptotic cells and altered levels of apoptosis-associated protein expression in SAS cells. The results from western blotting revealed that quercetin increased Fas, Fas-Ligand, fas-associated protein with death domain and caspase-8, all of which associated with cell surface death receptor. Furthermore, quercetin increased the levels of activating transcription factor (ATF)-6α, ATF-6β and gastrin-releasing peptide-78 which indicated an increase in endoplasm reticulum stress, increased levels of the pro-apoptotic protein BH3 interacting-domain death antagonist, and decreased levels of anti-apoptotic proteins B-cell lymphoma (Bcl) 2 and Bcl-extra large which may have led to the decreases of ΔΨm. Additionally, confocal microscopy suggested that quercetin was able to increase the expression levels of cytochrome c, apoptosis-inducing factor and endonuclease G, which are associated with apoptotic pathways. Therefore, it is hypothesized that quercetin may potentially be used as a novel anti-cancer agent for the treatment of oral cancer in future.


Anti-neoplastic effect of mangiferin on human ovarian adenocarcinoma OVCAR8 cells via the regulation of YAP.

  • Wenjing He‎ et al.
  • Oncology letters‎
  • 2019‎

Ovarian cancer is the most malignant gynecologic neoplasm in women and has the worst prognosis of all cancer types in women based on the 5-year survival rates. A previous study indicated that mangiferin exerts an anti-neoplastic effect on human ovarian cancer cells by targeting Notch3. Additionally, it has been demonstrated that Notch signaling is a functionally important downstream effector of Yes-associated protein (YAP), therefore it was hypothesized that YAP may be involved in the antitumor effect of mangiferin. The present study aimed to further reveal the mangiferin-mediated inhibitory effect on ovarian cancer and investigate the molecular anticancer mechanism of mangiferin. Based on the in vitro data, accompanied with the significantly reduced cell proliferation of mangiferin-treated cells compared with mangiferin-treated YAP-overexpressed cells (P<0.05), YAP expression was identified to be substantially downregulated by mangiferin. In contrast, observations of the cell morphology and apoptotic percentages revealed that the antitumor effect of mangiferin may be reversed by YAP overexpression. Furthermore, decreased levels of migration and invasion were observed in mangiferin-treated cells, which may also be abrogated by YAP overexpression. Thus, these data further demonstrated that mangiferin inhibits metastasis by regulating YAP. Additionally, due to the frequent chemoresistance observed in cisplatin-based chemotherapy, the present study evaluated the cisplatin resistance in OVCAR8 cells and elucidated that mangiferin may sensitize the tumor cells to cisplatin; and this improved sensitization was also abolished by YAP overexpression. These results collectively indicated that YAP was not only closely associated with the anticancer effect of mangiferin, but also mediated drug resistance in tumor. Furthermore, the downregulation of downstream TEA domain transcription factor 4 expression was observed in the mangiferin-treated cells, further validating the inhibitory effect of mangiferin on YAP. In addition, OVCAR8 cell xenograft models revealed that through increasing the sensitivity of a tumor to cisplatin, mangiferin inhibited the growth of a tumor and increased the survival time of tumor xenograft mice. Based on these results, it was concluded that mangiferin may inhibit tumor cell growth and enhance cisplatin-sensitivity in OVCAR8 cells via the regulation of the YAP pathway. Altogether, by targeting YAP and enhancing the response to cisplatin treatment, mangiferin potentially functioned as a novel therapeutic agent in the treatment of ovarian cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: