Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins.

  • Bryan A Gibson‎ et al.
  • Biochemistry‎
  • 2017‎

ADP-ribosylation is an enzyme-catalyzed post-translational modification of proteins in which the ADP-ribose (ADPR) moiety of NAD+ is transferred to a specific amino acid in a substrate protein. The biological functions of ADP-ribosylation are numerous and diverse, ranging from normal physiology to pathological conditions. Biochemical and cellular studies of the diverse forms and functions of ADPR require immunological reagents that can be used for detection and enrichment. The lack of a complete set of tools that recognize all forms of ADPR [i.e., mono-, oligo-, and poly(ADP-ribose)] has hampered progress. Herein, we describe the generation and characterization of a set of recombinant antibody-like ADP-ribose binding proteins, in which naturally occurring ADPR binding domains, including macrodomains and WWE domains, have been functionalized by fusion to the Fc region of rabbit immunoglobulin. These reagents, which collectively recognize all forms of ADPR with different specificities, are useful in a broad array of antibody-based assays, such as immunoblotting, immunofluorescent staining of cells, and immunoprecipitation. Observations from these assays suggest that the biology of ADPR is more diverse, rich, and complex than previously thought. The ARBD-Fc fusion proteins described herein will be useful tools for future exploration of the chemistry, biochemistry, and biology of ADP-ribose.


Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.

  • Ken Y Lin‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2018‎

ADP-ribosylation is a covalent posttranslational modification of proteins that is catalyzed by various types of ADP-ribosyltransferase (ART) enzymes, including members of the poly(ADP-ribose) polymerase (PARP) family. ADP-ribose (ADPR) modifications can occur as mono(ADP-ribosyl)ation, oligo(ADP-ribosyl)ation, or poly(ADP-ribosyl)ation, depending on the particular ART enzyme catalyzing the reaction, as well as the specific reaction conditions. Understanding the biology of ADP-ribosylation requires facile and robust means of generating and detecting the modification in all of its forms. Here we describe how to generate protein-linked mono(ADP-ribose), oligo(ADP-ribose), and poly(ADP-ribose) (MAR, OAR, and PAR, respectively) in vitro as an automodification of PARPs 1 or 3. First, epitope-tagged PARP-1 (a PARP polyenzyme) and PARP-3 (a PARP monoenzyme) are expressed individually in insect cells using baculovirus expression vectors, and purified using immunoaffinity chromatography. Second, the purified recombinant PARPs are incubated individually in the presence of different concentrations of NAD+ (as a donor of ADPR groups) and sheared DNA (to activate their catalytic activities) resulting in various forms of auto-ADP-ribosylation. Third, the products are confirmed using ADPR detection reagents that can distinguish among MAR, OAR, and PAR. Finally, if desired, the OAR and PAR can be deproteinized. The protein-linked and free MAR, OAR, and PAR generated in these reactions can be used as standards, substrates, or binding partners in a variety of ADPR-related assays.


Yin and Yang Regulation of Liver X Receptor α Signaling Control of Cholesterol Metabolism by Poly(ADP-ribose) polymerase 1.

  • Fengxiao Zhang‎ et al.
  • International journal of biological sciences‎
  • 2020‎

Liver X receptor α (LXRα) controls a set of key genes involved in cholesterol metabolism. However, the molecular mechanism of this regulation remains unknown. The regulatory role of poly(ADP-ribose) polymerase 1 (PARP1) in cholesterol metabolism in the liver was examined. Activation of PARP1 in the liver suppressed LXRα sensing and prevented upregulation of genes involved in HCD-induced cholesterol disposal. Mechanistically, LXRα was poly(ADP-ribosyl)ated by activated PARP1, which decreased DNA binding capacity of LXRα, thus preventing its recruitment to the target promoter. Intriguingly, we found that unactivated PARP1 was indispensable for LXRα transactivation and target expression. Further exploration identified unactivated PARP1 as an essential component of the LXRα-promoter complex. Taken together, the results indicate that activated PARP1 suppresses LXRα activation through poly(ADP-ribosyl)ation, while unactivated PARP1 promotes LXRα activation through physical interaction. PARP1 is a pivotal regulator of LXRα signaling and cholesterol metabolism in the liver.


Identification of poly(ADP-ribose) polymerase-1 as a cell cycle regulator through modulating Sp1 mediated transcription in human hepatoma cells.

  • Liu Yang‎ et al.
  • PloS one‎
  • 2013‎

The transcription factor Sp1 is implicated in the activation of G0/G1 phase genes. Modulation of Sp1 transcription activities may affect G1-S checkpoint, resulting in changes in cell proliferation. In this study, our results demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP-1) promoted cell proliferation by inhibiting Sp1 signaling pathway. Cell proliferation and cell cycle assays demonstrated that PARP inhibitors or PARP-1 siRNA treatment significantly inhibited proliferation of hepatoma cells and induced G0/G1 cell cycle arrest in hepatoma cells, while overexpression of PARP-1 or PARP-1 activator treatment promoted cell cycle progression. Simultaneously, inhibition of PARP-1 enhanced the expression of Sp1-mediated checkpoint proteins, such as p21 and p27. In this study, we also showed that Sp1 was poly(ADP-ribosyl)ated by PARP-1 in hepatoma cells. Poly(ADP-ribosyl)ation suppressed Sp1 mediated transcription through preventing Sp1 binding to the Sp1 response element present in the promoters of target genes. Taken together, these data indicated that PARP-1 inhibition attenuated the poly(ADP-ribosyl)ation of Sp1 and significantly increased the expression of Sp1 target genes, resulting in G0/G1 cell cycle arrest and the decreased proliferative ability of the hepatoma cells.


Functional Analysis of Histone ADP-Ribosylation In Vitro and in Cells.

  • Dan Huang‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2023‎

Gene regulation in the nucleus requires precise control of the molecular processes that dictate how, when, and which genes are transcribed. The posttranslational modification (PTM) of histones in chromatin is an effective means to link cellular signaling to gene expression outcomes. The repertoire of histone PTMs includes phosphorylation, acetylation, methylation, ubiquitylation, and ADP-ribosylation (ADPRylation). ADPRylation is a reversible PTM that results in the covalent transfer of ADP-ribose units derived from NAD+ to substrate proteins on glutamate, aspartate, serine, and other amino acids. Histones were the first substrate proteins identified for ADPRylation, over five decades ago. Since that time, histone ADPRylation has been shown to be a widespread and critical regulator of chromatin structure and function during transcription, DNA repair, and replication. Here, we describe a set of protocols that allow the user to investigate site-specific histone ADPRylation and its functional consequences in biochemical assays and in cells in a variety of biological systems. With the recent discovery that some cancer-causing histone mutations (i.e., oncohistone mutations) occur at functional sites of regulatory ADPRylation, these protocols may have additional utility in studies of oncology.


Functional Interplay between Histone H2B ADP-Ribosylation and Phosphorylation Controls Adipogenesis.

  • Dan Huang‎ et al.
  • Molecular cell‎
  • 2020‎

Although ADP-ribosylation of histones by PARP-1 has been linked to genotoxic stress responses, its role in physiological processes and gene expression has remained elusive. We found that NAD+-dependent ADP-ribosylation of histone H2B-Glu35 by small nucleolar RNA (snoRNA)-activated PARP-1 inhibits AMP kinase-mediated phosphorylation of adjacent H2B-Ser36, which is required for the proadipogenic gene expression program. The activity of PARP-1 on H2B requires NMNAT-1, a nuclear NAD+ synthase, which directs PARP-1 catalytic activity to Glu and Asp residues. ADP-ribosylation of Glu35 and the subsequent reduction of H2B-Ser36 phosphorylation inhibits the differentiation of adipocyte precursors in cultured cells. Parp1 knockout in preadipocytes in a mouse lineage-tracing genetic model increases adipogenesis, leading to obesity. Collectively, our results demonstrate a functional interplay between H2B-Glu35 ADP-ribosylation and H2B-Ser36 phosphorylation that controls adipogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: