Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,731 papers

Prediction of Poly(A) Sites by Poly(A) Read Mapping.

  • Thomas Bonfert‎ et al.
  • PloS one‎
  • 2017‎

RNA-seq reads containing part of the poly(A) tail of transcripts (denoted as poly(A) reads) provide the most direct evidence for the position of poly(A) sites in the genome. However, due to reduced coverage of poly(A) tails by reads, poly(A) reads are not routinely identified during RNA-seq mapping. Nevertheless, recent studies for several herpesviruses successfully employed mapping of poly(A) reads to identify herpesvirus poly(A) sites using different strategies and customized programs. To more easily allow such analyses without requiring additional programs, we integrated poly(A) read mapping and prediction of poly(A) sites into our RNA-seq mapping program ContextMap 2. The implemented approach essentially generalizes previously used poly(A) read mapping approaches and combines them with the context-based approach of ContextMap 2 to take into account information provided by other reads aligned to the same location. Poly(A) read mapping using ContextMap 2 was evaluated on real-life data from the ENCODE project and compared against a competing approach based on transcriptome assembly (KLEAT). This showed high positive predictive value for our approach, evidenced also by the presence of poly(A) signals, and considerably lower runtime than KLEAT. Although sensitivity is low for both methods, we show that this is in part due to a high extent of spurious results in the gold standard set derived from RNA-PET data. Sensitivity improves for poly(A) sites of known transcripts or determined with a more specific poly(A) sequencing protocol and increases with read coverage on transcript ends. Finally, we illustrate the usefulness of the approach in a high read coverage scenario by a re-analysis of published data for herpes simplex virus 1. Thus, with current trends towards increasing sequencing depth and read length, poly(A) read mapping will prove to be increasingly useful and can now be performed automatically during RNA-seq mapping with ContextMap 2.


Poly(A)-seq: A method for direct sequencing and analysis of the transcriptomic poly(A)-tails.

  • Fengyun Yu‎ et al.
  • PloS one‎
  • 2020‎

Poly(A) tails at the 3' end of eukaryotic messenger RNAs control mRNA stability and translation efficiency. Facilitated by various NGS methods, alternative polyadenylation sites determining the 3'-UTR length of gene transcripts have been extensively studied. However, poly(A) lengths demonstrating dynamic and developmental regulation remain largely unexplored. The recently developed NGS-based methods for genome-wide poly(A) profiling have promoted the study of genom-wide poly(A) dynamics. Here we present a straight forward NGS-method for poly(A) profiling, which applies a direct 3'-end adaptor ligation and the template switching for 5'-end adaptor ligation for cDNA library construction. Poly(A) lengths are directly calculated from base call data using a self-developed pipeline pA-finder. The libraries were directly sequenced from the 3'-UTR regions into the followed poly(A) tails, firstly on NextSeq 500 to produce single-end 300-nt reads, demonstrating the method feasibility and that optimization of the fragmented RNA size for cDNA library construction could detecting longer poly (A) tails. We next applied Poly(A)-seq cDNA libraries containing 40-nt and 120-nt poly(A) tail spike-in RNAs on HiSeq X-ten and NovaSeq 6000 to obtain 150-nt and 250-nt pair-end reads. The sequencing profiles of the spike-in RNAs demonstrated both high accuracy and high quality score in reading poly(A) tails. The poly(A) signal bleeding into the 3' adaptor sequence and a sharp decreased quality score at the junction were observed, allowing the modification of pA-finder to remove homopolymeric signal bleeding. We hope that wide applications of Poly(A)-seq help facilitate the study of the development- and disease-related poly(A) dynamics and regulation, and of the recent emerging mixed tailing regulation.


Poly A- transcripts expressed in HeLa cells.

  • Qingfa Wu‎ et al.
  • PloS one‎
  • 2008‎

Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3' poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown.


Biophysical characterization of the strong stabilization of the RNA triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) alkyl ether berberine analogs.

  • Debipreeta Bhowmik‎ et al.
  • PloS one‎
  • 2012‎

Binding of two 9-O-(ω-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)(•)poly(A)(*)poly(U) was studied by various biophysical techniques.


Direct addition of poly-lysine or poly-ethylenimine to the medium: A simple alternative to plate pre-coating.

  • Alexander Faussner‎ et al.
  • PloS one‎
  • 2022‎

For most cell culture experiments, it is indispensable that the cells are firmly anchored to culture plates, withstanding rinsing steps that can create shear forces and tolerating temperature changes without detaching. For semi-adherent cells such as the common HEK 293 or PC-12 cells, this could so far be obtained by time-consuming plate pre-coating with cationic polymer solutions. We report here, that i) pre-coating with the cheaper poly-ethylenimine (PEI) works as well as the commonly used poly-D-lysine (PDL), but more importantly and novel ii) that simple direct addition of either PEI (1.5 μg/ml) or PDL (2 μg/ml) to the cell culture medium results in strongly anchored HEK 293 cells, indistinguishable from ones seeded on pre-coated plates. Therefore, the replacement of plate pre-coating by direct addition of either PEI or PDL gives comparable excellent results, but is highly labour-, time-, and cost-efficient. Moreover, we could show that addition of PDL or PEI also works similarly well in animal-free culture using human platelet lysate instead of fetal bovine serum. Interestingly, additional experiments showed that strong cell attachment requires only cationic polymers but not fetal bovine serum or human platelet lysate added to the medium.


Tristetraprolin inhibits poly(A)-tail synthesis in nuclear mRNA that contains AU-rich elements by interacting with poly(A)-binding protein nuclear 1.

  • Yu-Lun Su‎ et al.
  • PloS one‎
  • 2012‎

Tristetraprolin binds mRNA AU-rich elements and thereby facilitates the destabilization of mature mRNA in the cytosol.


Poly (A)+ transcriptome assessment of ERBB2-induced alterations in breast cell lines.

  • Dirce Maria Carraro‎ et al.
  • PloS one‎
  • 2011‎

We report the first quantitative and qualitative analysis of the poly (A)⁺ transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor) an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.


Targeted delivery of doxorubicin-loaded poly (ε-caprolactone)-b-poly (N-vinylpyrrolidone) micelles enhances antitumor effect in lymphoma.

  • Sumit Kumar Hira‎ et al.
  • PloS one‎
  • 2014‎

The present study was motivated by the need to design a safe nano-carrier for the delivery of doxorubicin which could be tolerant to normal cells. PCL63-b-PNVP90 was loaded with doxorubicin (6 mg/ml), and with 49.8% drug loading efficiency; it offers a unique platform providing selective immune responses against lymphoma.


Poly(oxyethylene)/Poly(oxypropylene) butyl ether prolongs the repellent effect of N,N-diethyl-3-toluamide on the skin.

  • Mayu Kawaguchi‎ et al.
  • PloS one‎
  • 2023‎

N,N-diethyl-meta-toluamide (DEET) is a widely used insect repellent, with minimal skin permeation and sustained repellent activity in the superficial layers of the skin. In this study, we prepared a 10% DEET formulation consisting of 40% ethanol with or without 2% poly(oxyethylene)/poly(oxypropylene) butyl ether (POE-POP), an amphiphilic random copolymer. Further, we demonstrated the effects of POE-POP on tensile stress (stickiness), hydrophobicity, skin retention, permeation, and repellent activity of DEET. Stickiness was measured in male ICR mice (7-week old), and skin retention and permeation were evaluated in male Wistar rats (7-week old). In addition, female Aedes albopictus were used to measure the repellent action of DEET. The addition of POE-POP did not affect stickiness, volatility, and degradability but decreased logP and increased viscosity of DEET. Next, we demonstrated the behavior of DEET formulations in the rat skin. POE-POP prolonged the retention of DEET in the superficial layers of the rat skin (skin surface and stratum corneum) and decreased the penetration of DEET into rat skin tissues (epithelium and dermis). The repellent effect of DEET was also enhanced by the addition of POE-POP. However, severe skin damage was not observed after repetitive treatment with DEET formulations containing POE-POP for one month (twice a day). In conclusion, we demonstrated that a 10% DEET formulation consisting of 40% ethanol and 2% POE-POP attenuated the skin penetration and prolonged the repellent action of DEET without causing stickiness and skin damage. We conclude that the combination of ethanol and POE-POP is useful as a safe and effective delivery system for the development of insect repellent formulations containing DEET.


Electrospun poly(L-lactide)/poly(ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells.

  • Liang Chen‎ et al.
  • PloS one‎
  • 2013‎

The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid) (PLLA) and poly (ε-caprolactone) (PCL) are both excellent aliphatic polyester with almost "opposite" characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS) and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs) were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering.


Poly (A) Binding Protein Cytoplasmic 1 Is a Novel Co-Regulator of the Androgen Receptor.

  • Kurtis Eisermann‎ et al.
  • PloS one‎
  • 2015‎

The androgen receptor (AR) is a member of the steroid receptor superfamily that regulates gene expression in a ligand-dependent manner. The NTD of the AR plays a key role in AR transactivation including androgen-independent activation of the AR in castration-resistant prostate cancer (CRPC) cells. We recently reported that amino acids (a.a.) 50-250 of the NTD are capable of modulating AR nucleocytoplasmic trafficking. To further explore the mechanism associated with a.a. 50-250, GFP pull-down assays were performed in C4-2 CRPC cells transfected with GFP tagged a.a. 50-250 of the AR. Mass spectrometry analysis of the pulled down proteins identified poly (A) binding protein cytoplasmic 1 (PABPC1) interaction with this region of the AR. In silico analysis of gene expression data revealed PABPC1 up-regulation in prostate cancer tissue specimens and this up-regulation correlates to increased disease recurrence. Co-immunoprecipitation assays confirmed the association of PABPC1 with a.a. 50-250 of the NTD of the AR. Knockdown of PABPC1 decreased nuclear AR protein levels and inhibited androgen activation of the AR target PSA in LNCaP and C4-2 cells. Additionally, knockdown of PABPC1 inhibited transactivation of the PSA promoter by NAR (AR lacking the LBD) and attenuated proliferation of AR-positive prostate cancer cells. These findings suggest that PABPC1 is a novel co-regulator of the AR and may be a potential target for blocking activation of the AR in CRPC.


Establishment of a pulmonary epithelial barrier on biodegradable poly-L-lactic-acid membranes.

  • Salvatore Montesanto‎ et al.
  • PloS one‎
  • 2019‎

Development of biocompatible and functional scaffolds for tissue engineering is a major challenge, especially for development of polarised epithelia that are critical structures in tissue homeostasis. Different in vitro models of the lung epithelial barrier have been characterized using non-degradable polyethylene terephthalate membranes which limits their uses for tissue engineering. Although poly-L-lactic acid (PLLA) membranes are biodegradable, those prepared via conventional Diffusion Induced Phase Separation (DIPS) lack open-porous geometry and show limited permeability compromising their use for epithelial barrier studies. Here we used PLLA membranes prepared via a modification of the standard DIPS protocol to control the membrane surface morphology and permeability. These were bonded to cell culture inserts for use in barrier function studies. Pulmonary epithelial cells (H441) readily attached to the PLLA membranes and formed a confluent cell layer within two days. This was accompanied by a significant increase in trans-epithelial electrical resistance and correlated with the formation of tight junctions and vectorial cytokine secretion in response to TNFα. Our data suggest that a structurally polarized and functional epithelial barrier can be established on PLLA membranes produced via a non-standard DIPS protocol. Therefore, PLLA membranes have potential utility in lung tissue engineering applications requiring bio-absorbable membranes.


Poly(ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Benzo(a)pyrene Induced Cell Transformation.

  • Xuan Li‎ et al.
  • PloS one‎
  • 2016‎

Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and known carcinogen, which can induce malignant transformation in rodent and human cells. Poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme that catalyzes the degradation of poly(ADP-ribose) (PAR), has been known to play an important role in regulating DNA damage repair and maintaining genomic stability. Although PARG has been shown to be a downstream effector of BaP, the role of PARG in BaP induced carcinogenesis remains unclear. In this study, we used the PARG-deficient human bronchial epithelial cell line (shPARG) as a model to examine how PARG contributed to the carcinogenesis induced by chronic BaP exposure under various concentrations (0, 10, 20 and 40 μM). Our results showed that PARG silencing dramatically reduced DNA damages, chromosome abnormalities, and micronuclei formations in the PARG-deficient human bronchial epithelial cells compared to the control cells (16HBE cells). Meanwhile, the wound healing assay showed that PARG silencing significantly inhibited BaP-induced cell migration. Furthermore, silencing of PARG significantly reduced the volume and weight of tumors in Balb/c nude mice injected with BaP induced transformed human bronchial epithelial cells. This was the first study that reported evidences to support an oncogenic role of PARG in BaP induced carcinogenesis, which provided a new perspective for our understanding in BaP exposure induced cancer.


Suppression of cellular transformation by poly (A) binding protein interacting protein 2 (Paip2).

  • Amy B Rosenfeld‎
  • PloS one‎
  • 2011‎

Controlling translation is crucial for the homeostasis of a cell. Its deregulation can facilitate the development and progression of many diseases including cancer. Poly (A) binding protein interacting protein 2 (Paip2) inhibits efficient initiation of translation by impairing formation of the necessary closed loop of mRNA. The over production of Paip2 in the presence of a constitutively active form of hRas(V12) can reduce colony formation in a semi-solid matrix and focus formation on a cell monolayer. The ability of Paip2 to bind to Pabp is required to suppress the transformed phenotype mediated by hRas(V12). These observations indicate that Paip2 is able to function as a tumor suppressor.


Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation.

  • Yu-Hui Peng‎ et al.
  • PloS one‎
  • 2016‎

Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5'-capped and 3'-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation.


The mechanism of poly-galloyl-glucoses preventing Influenza A virus entry into host cells.

  • Hu Ge‎ et al.
  • PloS one‎
  • 2014‎

Hemagglutinin (HA) is essential for Influenza A virus infection, but its diversity of subtypes presents an obstacle to developing broad-spectrum HA inhibitors. In this study, we investigated the molecular mechanisms by which poly-galloyl glucose (pGG) analogs inhibit influenza hemagglutinin (HA) in vitro and in silico. We found that (1) star-shaped pGG analogs exhibit HA-inhibition activity by interacting with the conserved structural elements of the receptor binding domain (RBD); (2) HA inhibition depends on the number of galloyl substituents in a pGG analog; the best number is four; and when PGG binds with two HA trimers at their conserved receptor binding domains (loop 130, loop 220, and 190-α-helix), PGG acts as a molecular glue by aggregating viral particles so as to prevent viral entry into host cells (this was revealed via an in silico simulation on the binding of penta-galloyl-glucose (PGG) with HA). pGGs are also effective on a broad-spectrum influenza A subtypes (including H1, H3, H5, H7); this suggests that pGG analogs can be applied to most influenza A subtypes as a prophylactic against influenza viral infections.


Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein.

  • Guennadi Kozlov‎ et al.
  • PloS one‎
  • 2010‎

PABPC1 (cytosolic poly(A)-binding protein 1) is an RNA-binding protein that binds to the poly(A) tail of mRNAs to promote translation and mRNA turnover. In addition to RNA-binding domains, PABPC1 contains a unique protein-protein interaction domain, MLLE (also known as PABC) that binds regulatory proteins and translation factors that contain a conserved 12 amino acid peptide motif termed PAM2. Eukaryotic Release Factor 3 (eRF3/GSPT1) contains two overlapping PAM2 sequences, which are required for its activity. Here, we determined the crystal structures of the MLLE domain from PABPC1 in complex with the two PAM2 regions of eRF3. The structures reveal a mechanism of cooperativity between the two PAM2 sites that increases the binding affinity but prevents the binding of more than one molecule of eRF3 to PABPC1. Relative to previous structures, the high-resolution crystal structures force a re-evaluation of the PAM2 motif and improve our understanding of the molecular basis of MLLE peptide recognition.


Poly(Lactic Acid) Nanoparticles Targeting α5β1 Integrin as Vaccine Delivery Vehicle, a Prospective Study.

  • Bastien Dalzon‎ et al.
  • PloS one‎
  • 2016‎

Biodegradable polymeric nanoparticles are vehicles of choice for drug delivery and have the ability to encapsulate and present at their surface different molecules of interest. Among these bio-nanocarriers, poly(lactic acid) (PLA) nanoparticles have been used as adjuvant and vehicle for enhanced vaccine efficacy. In order to develop an approach to efficient vaccine delivery, we developed nanoparticles to target α5β1 positive cells. We first overproduced, in bacteria, human fibronectin FNIII9/10 recombinant proteins possessing an integrin α5β1 binding site, the RGDS sequence, or a mutated form of this site. After having confirmed the integrin binding properties of these recombinant proteins in cell culture assays, we were able to formulate PLA nanoparticles with these FNIII9/10 proteins at their surface. We then confirmed, by fluorescence and confocal microscopy, an enhanced cellular uptake by α5β1+ cells of RGDS-FNIII9/10 coated PLA nanoparticles, in comparison to KGES-FNIII9/10 coated or non-coated controls. As a first vaccination approach, we prepared PLA nanoparticles co-coated with p24 (an HIV antigen), and RGDS- or KGES-FNIII9/10 proteins, followed by subcutaneous vaccine administration, in mice. Although we did not detect improvements in the apparent humoral response to p24 antigen in the serum of RGDS/p24 nanoparticle-treated mice, the presence of the FNIII proteins increased significantly the avidity index of anti-p24 antibodies compared to p24-nanoparticle-injected control mice. Future developments of this innovative targeted vaccine are discussed.


A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

  • Lauren E Ta‎ et al.
  • PloS one‎
  • 2013‎

Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose) polymerase (PARP) inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888) would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice.


Characterization of genes encoding poly(A) polymerases in plants: evidence for duplication and functional specialization.

  • Lisa R Meeks‎ et al.
  • PloS one‎
  • 2009‎

Poly(A) polymerase is a key enzyme in the machinery that mediates mRNA 3' end formation in eukaryotes. In plants, poly(A) polymerases are encoded by modest gene families. To better understand this multiplicity of genes, poly(A) polymerase-encoding genes from several other plants, as well as from Selaginella, Physcomitrella, and Chlamydomonas, were studied.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: