Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 337 papers

Fabrication of Poly Dopamine@poly (Lactic Acid-Co-Glycolic Acid) Nanohybrids for Cancer Therapy via a Triple Collaboration Strategy.

  • Yunhao Li‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Breast cancer is a common malignant tumor among women and has a higher risk of early recurrence, distant metastasis, and poor prognosis. Systemic chemotherapy is still the most widely used treatment for patients with breast cancer. However, unavoidable side effects and acquired resistance severely limit the efficacy of treatment. The multi-drug combination strategy has been identified as an effective tumor therapy pattern. In this investigation, we demonstrated a triple collaboration strategy of incorporating the chemotherapeutic drug doxorubicin (DOX) and anti-angiogenesis agent combretastatin A4 (CA4) into poly(lactic-co-glycolic acid) (PLGA)-based co-delivery nanohybrids (PLGA/DC NPs) via an improved double emulsion technology, and then a polydopamine (PDA) was modified on the PLGA/DC NPs' surface through the self-assembly method for photothermal therapy. In the drug-loaded PDA co-delivery nanohybrids (PDA@PLGA/DC NPs), DOX and CA4 synergistically induced tumor cell apoptosis by interfering with DNA replication and inhibiting tumor angiogenesis, respectively. The controlled release of DOX and CA4-loaded PDA@PLGA NPs in the tumor region was pH dependent and triggered by the hyperthermia generated via laser irradiation. Both in vitro and in vivo studies demonstrated that PDA@PLGA/DC NPs enhanced cytotoxicity under laser irradiation, and combined therapeutic effects were obtained when DOX, CA4, and PDA were integrated into a single nanoplatform. Taken together, the present study demonstrates a nanoplatform for combined DOX, CA4, and photothermal therapy, providing a potentially promising strategy for the synergistic treatment of breast cancer.


Multi-layer Scaffolds of Poly(caprolactone), Poly(glycerol sebacate) and Bioactive Glasses Manufactured by Combined 3D Printing and Electrospinning.

  • Adja B R Touré‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

Three-dimensional (3D) printing has been combined with electrospinning to manufacture multi-layered polymer/glass scaffolds that possess multi-scale porosity, are mechanically robust, release bioactive compounds, degrade at a controlled rate and are biocompatible. Fibrous mats of poly (caprolactone) (PCL) and poly (glycerol sebacate) (PGS) have been directly electrospun on one side of 3D-printed grids of PCL-PGS blends containing bioactive glasses (BGs). The excellent adhesion between layers has resulted in composite scaffolds with a Young's modulus of 240-310 MPa, higher than that of 3D-printed grids (125-280 MPa, without the electrospun layer). The scaffolds degraded in vitro by releasing PGS and BGs, reaching a weight loss of ~14% after 56 days of incubation. Although the hydrolysis of PGS resulted in the acidification of the buffer medium (to a pH of 5.3-5.4), the release of alkaline ions from the BGs balanced that out and brought the pH back to 6.0. Cytotoxicity tests performed on fibroblasts showed that the PCL-PGS-BGs constructs were biocompatible, with cell viability of above 125% at day 2. This study demonstrates the fabrication of systems with engineered properties by the synergy of diverse technologies and materials (organic and inorganic) for potential applications in tendon and ligament tissue engineering.


Functional Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Caprolactone) Based Nanocomposites Containing Graphene Oxide (GO) and Reduced Graphene Oxide (rGO).

  • Sandra Paszkiewicz‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

This work reports a study on the influence of graphene oxide (GO) and reduced graphene oxide (rGO) on the functional properties of poly(trimethylene terephthalate)-block-poly(caprolactone) (PTT-block-PCL-T) (75/25 wt.%/wt.%) copolymer, obtained from dimethyl terephthalate (DMT), 1,3-biopropanediol and polycaprolactone diol (PCL) via in situ polymerization. The article presents, if and how the reduction of graphene oxide, in comparison to the non-reduced one, can affect morphological, thermal, electrical and mechanical properties. SEM examination confirms/reveals the homogeneous distribution of GO/rGO nanoplatelets in the PTT-block-PCL-T copolymer matrix. More than threefold increase in the value of the tensile modulus is achieved by the addition of 1.0 wt.% of GO and rGO. Moreover, the thermal conductivity and thermal stability of the GO and rGO-based nanocomposites are also improved. The differential scanning calorimetry (DSC) measurement indicates that the incorporation of GO and rGO has a remarkable impact on the crystallinity of the nanocomposites (an increase of crystallization temperature up to 58 °C for nanocomposite containing 1.0 wt.% of GO is observed). Therefore, the high performances of the PTT-block-PCL-T-based nanocomposites are mainly attributed to the uniform dispersion of nanoplatelets in the polymer matrix and strong interfacial interactions between components.


Nanocarriers for Protein Delivery to the Cytosol: Assessing the Endosomal Escape of Poly(Lactide-co-Glycolide)-Poly(Ethylene Imine) Nanoparticles.

  • Marianna Galliani‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

Therapeutic proteins and enzymes are a group of interesting candidates for the treatment of numerous diseases, but they often require a carrier to avoid degradation and rapid clearance in vivo. To this end, organic nanoparticles (NPs) represent an excellent choice due to their biocompatibility, and cross-linked enzyme aggregates (CLEAs)-loaded poly (lactide-co-glycolide) (PLGA) NPs have recently attracted attention as versatile tools for targeted enzyme delivery. However, PLGA NPs are taken up by cells via endocytosis and are typically trafficked into lysosomes, while many therapeutic proteins and enzymes should reach the cellular cytosol to perform their activity. Here, we designed a CLEAs-based system implemented with a cationic endosomal escape agent (poly(ethylene imine), PEI) to extend the use of CLEA NPs also to cytosolic enzymes. We demonstrated that our system can deliver protein payloads at cytoplasm level by two different mechanisms: Endosomal escape and direct translocation. Finally, we applied this system to the cytoplasmic delivery of a therapeutically relevant enzyme (superoxide dismutase, SOD) in vitro.


Tannic Acid-Mediated Aggregate Stabilization of Poly(N-vinylpyrrolidone)-b-poly(oligo (ethylene glycol) methyl ether methacrylate) Double Hydrophilic Block Copolymers.

  • Noah Al Nakeeb‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

The self-assembly of block copolymers in aqueous solution is an important field in modern polymer science that has been extended to double hydrophilic block copolymers (DHBC) in recent years. In here, a significant improvement of the self-assembly process of DHBC in aqueous solution by utilizing a linear-brush macromolecular architecture is presented. The improved self-assembly behavior of poly(N-vinylpyrrolidone)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PVP-b-P(OEGMA)) and its concentration dependency is investigated via dynamic light scattering (DLS) (apparent hydrodynamic radii ≈ 100-120 nm). Moreover, the DHBC assemblies can be non-covalently crosslinked with tannic acid via hydrogen bonding, which leads to the formation of small aggregates as well (apparent hydrodynamic radius ≈ 15 nm). Non-covalent crosslinking improves the self-assembly and stabilizes the aggregates upon dilution, reducing the concentration dependency of aggregate self-assembly. Additionally, the non-covalent aggregates can be disassembled in basic media. The presence of aggregates was studied via cryogenic scanning electron microscopy (cryo-SEM) and DLS before and after non-covalent crosslinking. Furthermore, analytical ultracentrifugation of the formed aggregate structures was performed, clearly showing the existence of polymer assemblies, particularly after non-covalent crosslinking. In summary, we report on the completely hydrophilic self-assembled structures in solution formed from fully biocompatible building entities in water.


Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model.

  • Zbynek Novy‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

Nanoparticles (NPs) represent an emerging platform for diagnosis and treatment of various diseases such as cancer, where they can take advantage of enhanced permeability and retention (EPR) effect for solid tumor accumulation. To improve their colloidal stability, prolong their blood circulation time and avoid premature entrapment into reticuloendothelial system, coating with hydrophilic biocompatible polymers is often essential. Most studies, however, employ just one type of coating polymer. The main purpose of this study is to head-to-head compare biological behavior of three leading polymers commonly used as "stealth" coating materials for biocompatibilization of NPs poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly[N-(2-hydroxypropyl)methacrylamide] in an in vivo animal solid tumor model. We used radiolabeled biodegradable hydroxyapatite NPs as a model nanoparticle core within this study and we anchored the polymers to the NPs core by hydroxybisphosphonate end groups. The general suitability of polymers for coating of NPs intended for solid tumor accumulation is that poly(2-ethyl-2-oxazoline) and poly(ethylene oxide) gave comparably similar very good results, while poly[N-(2-hydroxypropyl)methacrylamide] was significantly worse. We did not observe a strong effect of molecular weight of the coating polymers on tumor and organ accumulation, blood circulation time, biodistribution and biodegradation of the NPs.


Internal Structure of Thermoresponsive Physically Crosslinked Nanogel of Poly[N-(2-hydroxypropyl)methacrylamide]-Block-Poly[N-(2,2-difluoroethyl)acrylamide], Prominent 19F MRI Tracer.

  • David Babuka‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

Fluorine-19 MRI is a promising noninvasive diagnostic method. However, the absence of a nontoxic fluorine-19 MRI tracer that does not suffer from poor biodistribution as a result of its strong fluorophilicity is a constant hurdle in the widespread applicability of this otherwise versatile diagnostic technique. The poly[N-(2-hydroxypropyl)methacrylamide]-block-poly[N-(2,2-difluoroethyl)acrylamide] thermoresponsive copolymer was proposed as an alternative fluorine-19 MRI tracer capable of overcoming such shortcomings. In this paper, the internal structure of self-assembled particles of this copolymer was investigated by various methods including 1D and 2D NMR, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The elucidated structure appears to be that of a nanogel with greatly swollen hydrophilic chains and tightly packed thermoresponsive chains forming a network within the nanogel particles, which become more hydrophobic with increasing temperature. Its capacity to provide a measurable fluorine-19 NMR signal in its aggregated state at human body temperature was also investigated and confirmed. This capacity stems from the different fluorine-19 nuclei relaxation properties compared to those of hydrogen-1 nuclei.


A General Protocol for Electrospun Non-Woven Fabrics of Dialdehyde Cellulose and Poly(Vinyl Alcohol).

  • Slavica Hell‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

In the past two decades, research on electrospinning has boomed due to its advantages of simple process, small fiber diameter, and special physical and chemical properties. The electrospun fibers are collected in a non-woven state in most cases (electrospun non-woven fabrics, ESNWs), which renders the electrospinning method an optimum approach for non-woven fabric manufacturing on the nano-scale. The present study establishes a convenient preparation procedure for converting water-soluble dialdehyde cellulose (DAC) into DAC-based electrospun non-woven fabrics (ESNWs) reinforced with poly(vinyl alcohol) (PVA). The aldehyde content, which was quantified by colorimetry using Schiff's reagent, was 11.1 mmol per gram of DAC, which corresponds to a conversion yield of ca. 90%. DAC is fully water-soluble at room temperature between 10 and 30 wt%, and aqueous solutions turn into hydrogels within 24 h. To overcome gelation, NaHSO3, which forms bisulfite adducts with aldehyde functions, was added to the DAC and its concentration was optimized at 1 wt%. The electrospun (ES) dope containing 5 wt% DAC, 5 wt% PVA, and 1 wt% NaHSO3 in an aqueous solution was successfully transformed into ESNW, with an average fiber diameter of 345 ± 43 nm. Post-spinning treatment with excess hexamethylene diisocyanate was performed to insolubilize the ESNW materials. The occurrence of this chemical conversion was confirmed by energy-dispersive X-ray elemental analysis and vibrational spectra. The cross-linked DAC/PVA ESNW retained its thin fiber network upon soaking in distilled water, increasing the average fiber diameter to 424 ± 95 nm. This suggests that DAC/PVA-ESNWs will be applicable for incorporation or immobilization of biologically active substances.


Electrochemical Deposition and Investigation of Poly-9,10-Phenanthrenequinone Layer.

  • Povilas Genys‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

In this research, a 9,10-phenanthrenequinone (PQ) was electrochemically polymerized on a graphite rod electrode using potential cycling. The electrode modified by poly-9,10-phenanthrenequinone (poly-PQ) was studied by means of cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscopy. The poly-PQ shows variations in growth pattern depending on the number of potential cycles for the initiation of polymerization. Formed poly-PQ layer demonstrates good electric conductivity, great degree of electrochemical capacitance and unique oxidation/reduction properties, which are suitable for broad technological applications, including applicability in biosensors, supercapacitors and in some other electrochemical systems.


Degradable Plasma-Polymerized Poly(Ethylene Glycol)-Like Coating as a Matrix for Food-Packaging Applications.

  • Maryam Zabihzadeh Khajavi‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of polymer films. In this study, an atmospheric-pressure aerosol-assisted plasma deposition method was employed to develop a poly(ethylene glycol) (PEG)-like coating, which can act as a potential matrix for antimicrobial agents, by envisioning controlled-release food-packaging applications. Different plasma operating parameters, including the input power, monomer flow rate, and gap between the edge of the plasma head and substrate, were optimized to produce a PEG-like coating with a desirable water stability level and that can be biodegradable. The findings revealed that increased distance between the plasma head and substrate intensified gas-phase nucleation and diluted the active plasma species, which in turn led to the formation of a non-conformal rough coating. Conversely, at short plasma-substrate distances, smooth conformal coatings were obtained. Furthermore, at low input powers (<250 W), the chemical structure of the precursor was mostly preserved with a high retention of C-O functional groups due to limited monomer fragmentation. At the same time, these coatings exhibit low stability in water, which could be attributed to their low cross-linking degree. Increasing the power to 350 W resulted in the loss of the PEG-like chemical structure, which is due to the enhanced monomer fragmentation at high power. Nevertheless, owing to the enhanced cross-linking degree, these coatings were more stable in water. Finally, it could be concluded that a moderate input power (250-300 W) should be applied to obtain an acceptable tradeoff between the coating stability and PEG resemblance.


Poly(methacrylic Acid)-Cellulose Brushes as Anticancer Porphyrazine Carrier.

  • Elena L Krasnopeeva‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2021‎

The prospective strategy for treatment of cancer is based on the application of nano-sized macromolecular carriers, which are able penetrate inside and can be accumulated within tumor tissue. In this work graft copolymers of cellulose and poly(methacrylic acid) has been prepared and tested as a nanocontainers for the delivery of drug to tumor. For this purpose, two derivatives of porphyrazine suitable for photodynamic cancer therapy were loaded into prepared polymer brush. Fluorescence imaging was applied for monitoring of accumulation of porphyrazine in the CT26 murine colon carcinoma. The selective accumulation of cellulose brush loaded with porphyrazine in tumor was demonstrated by fluorescence intensity contrast between the tumor area and normal tissues. The tumor growth rate after photodynamic therapy were assessed and inhibition of its growth was revealed.


Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds.

  • Magda Silva‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2021‎

The anterior cruciate ligament (ACL) is one of the most prone to injury in the human body. Due to its insufficient vascularization and low regenerative capacity, surgery is often required when it is ruptured. Most of the current tissue engineering (TE) strategies are based on scaffolds produced with fibers due to the natural ligament's fibrous structure. In the present work, composite filaments based on poly(L-lactic acid) (PLA) reinforced with graphite nanoplatelets (PLA+EG) as received, chemically functionalized (PLA+f-EG), or functionalized and decorated with silver nanoparticles [PLA+((f-EG)+Ag)] were produced by melt mixing, ensuring good filler dispersion. These filaments were produced with diameters of 0.25 mm and 1.75 mm for textile-engineered and 3D-printed ligament scaffolds, respectively. The resulting composite filaments are thermally stable, and the incorporation of graphite increases the stiffness of the composites and decreases the electrical resistivity, as compared to PLA. None of the filaments suffered significant degradation after 27 days. The composite filaments were processed into 3D scaffolds with finely controlled dimensions and porosity by textile-engineered and additive fabrication techniques, demonstrating their potential for ligament TE applications.


Physico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibiotics.

  • Amalia Mira‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

Recent advances in the field of nanotechnology such as nanoencapsulation offer new biomedical applications, potentially increasing the scope and efficacy of therapeutic drug delivery. In addition, the discovery and development of novel biocompatible polymers increases the versatility of these encapsulating nanostructures, enabling chemical properties of the cargo and vehicle to be adapted to specific physiological requirements. Here, we evaluate the capacity of various polymeric nanostructures to encapsulate various antibiotics of different classes, with differing chemical structure. Polymers were sourced from two separate derivatives of poly(methyl vinyl ether-alt-maleic anhydride) (PMVE/MA): an acid (PMVE/MA-Ac) and a monoethyl ester (PMVE/MA-Es). Nanoencapsulation of antibiotics was attempted through electrospinning, and nanoparticle synthesis through solvent displacement, for both polymers. Solvent incompatibilities prevented the nanoencapsulation of amikacin, neomycin and ciprofloxacin in PMVE/MA-Es nanofibers. However, all compounds were successfully loaded into PMVE/MA-Es nanoparticles. Encapsulation efficiencies in nanofibers reached approximately 100% in all compatible systems; however, efficiencies varied substantially in nanoparticles systems, depending on the tested compound (14%-69%). Finally, it was confirmed that both these encapsulation processes did not alter the antimicrobial activity of any tested antibiotic against Staphylococcus aureus and Escherichia coli, supporting the viability of these approaches for nanoscale delivery of antibiotics.


Adsorption of Peptides onto Carbon Nanotubes Grafted with Poly(ethylene Oxide) Chains: A Molecular Dynamics Simulation Study.

  • Zuzana Benková‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2022‎

Carbon nanotubes (CNTs) display exceptional properties that predispose them to wide use in technological or biomedical applications. To remove the toxicity of CNTs and to protect them against undesired protein adsorption, coverage of the CNT sidewall with poly(ethylene oxide) (PEO) is often considered. However, controversial results on the antifouling effectiveness of PEO layers have been reported so far. In this work, the interactions of pristine CNT and CNT covered with the PEO chains at different grafting densities with polyglycine, polyserine, and polyvaline are studied using molecular dynamics simulations in vacuum, water, and saline environments. The peptides are adsorbed on CNT in all investigated systems; however, the adsorption strength is reduced in aqueous environments. Save for one case, addition of NaCl at a physiological concentration to water does not appreciably influence the adsorption and structure of the peptides or the grafted PEO layer. It turns out that the flexibility of the peptide backbone allows the peptide to adopt more asymmetric conformations which may be inserted deeper into the grafted PEO layer. Water molecules disrupt the internal hydrogen bonds in the peptides, as well as the hydrogen bonds formed between the peptides and the PEO chains.


Electrospun Zein Fibers Incorporating Poly(glycerol sebacate) for Soft Tissue Engineering.

  • Lena Vogt‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2018‎

For biomedical applications such as soft tissue engineering, plant proteins are becoming increasingly attractive. Zein, a class of prolamine proteins found in corn, offers excellent properties for application in the human body, but has inferior mechanical properties and lacks aqueous stability. In this study, electrospun scaffolds from neat zein and zein blended with prepolymer and mildly cross-linked poly(glycerol sebacate) (PGS) were fabricated. Less toxic solvents like acetic acid and ethanol were used. The morphological, physiochemical and degradation properties of the as-spun fiber mats were determined. Neat zein and zein-PGS fiber mats with high zein concentration (24 wt % and 27 wt %) showed defect-free microstructures. The average fiber diameter decreased with increasing PGS amount from 0.7 ± 0.2 µm to 0.09 ± 0.03 µm. The addition of PGS to zein resulted in a seven-fold increase in ultimate tensile strength and a four-fold increase in failure strain, whereas the Young's Modulus did not change significantly. Degradation tests in phosphate buffered saline revealed the morphological instability of zein containing fiber mats in contact with aqueous media. Therefore, the fibers were in situ cross-linked with N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide (EDC)/N-Hydroxysuccinimide (NHS), which led to improved morphological stability in aqueous environment. The novel fibers have suitable properties for application in soft tissue engineering.


Poly-L-arginine Coated Silver Nanoprisms and Their Anti-Bacterial Properties.

  • Fouzia Tanvir‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2017‎

The aim of this study was to test the effect of two different morphologies of silver nanoparticles, spheres, and prisms, on their antibacterial properties when coated with poly-L-arginine (poly-Arg) to enhance the interactions with cells. Silver nanoparticle solutions were characterized by UV-visible spectroscopy, transmission electron microscopy, dynamic light scattering, zeta potential, as well as antimicrobial tests. These ultimately showed that a prismatic morphology exhibited stronger antimicrobial effects against Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. The minimum bactericidal concentration was found to be 0.65 μg/mL in the case of a prismatic AgNP-poly-Arg-PVP (silver nanoparticle-poly-L-arginine-polyvinylpyrrolidone) nanocomposite. The anticancer cell activity of the silver nanoparticles was also studied, where the maximum effect against a HeLa cell line was 80% mortality with a prismatic AgNP-poly-Arg-PVP nanocomposite at a concentration of 11 μg/mL. The antimicrobial activity of these silver nanocomposites demonstrates the potential of such coated silver nanoparticles in the area of nano-medicine.


The Drug-Loaded Electrospun Poly(ε-Caprolactone) Mats for Therapeutic Application.

  • Alena Opálková Šišková‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2021‎

Diclofenac sodium salt (DSS)-loaded electrospun nanofiber mats on the base of poly(ε-caprolactone) (PCL) were investigated as biocompatible nanofibrous mats for medical applications with the ability to inhibit bacterial infections. The paper presents the characteristics of fibrous mats made by electrospinning and determines the effect of medicament on the fiber morphology, chemical, mechanical and thermal properties, as well as wettability. PCL and DSS-loaded PCL nanofibrous mats were characterized using scanning electron microscopy, transmission electron microscopy, attenuated total reflectance-Fourier transform infrared spectrometry, dynamic mechanical analysis, and contact angle measurements. Electron paramagnetic resonance measurements confirmed the lifetime of DSS before and after application of high voltage during the electrospinning process. In vitro biocompatibility was studied, and it was proved to be of good viability with ~92% of the diploid human cells culture line composed of lung fibroblast (MRC 5) after 48 h of incubation. Moreover, the significant activity of DSS-loaded nanofibers against cancer cells, Ca Ski and HeLa, was established as well. It was shown that 12.5% (m/V) is the minimal concentration for antibacterial activity when more than 99% of Escherichia coli (Gram-negative) and 99% of Staphylococcus aureus (Gram-positive) have been exterminated.


Hydrophilic Chlorin e6-Poly(amidoamine) Dendrimer Nanoconjugates for Enhanced Photodynamic Therapy.

  • So-Ri Lee‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2018‎

In photodynamic therapy (PDT), chlorin e6 (Ce6), with its high phototoxic potential and strong absorption of visible light, penetrates deeply into photodamaged tissue. However, despite this fact, the direct application of Ce6 to PDT has been limited by its low water solubility and poor cancer cell localization. To ameliorate this situation, we report herein on the use of a hydrophilic nanoconjugate (DC) comprised of Ce6 and poly(amidoamine) dendrimer, which improves the water solubility and intracellular uptake of Ce6, thereby enhancing PDT efficacy. The synthesis of DC was verified by ¹H nuclear magnetic resonance (NMR) analysis, and the coupling ratio of Ce6 introduced onto DC was 2.64. The prepared DC was spherical, with an average diameter of 61.7 ± 3.5 nm. In addition, the characteristic ultraviolet-visible absorption bands of DC in distilled water were similar to those of free Ce6 in dimethyl sulfoxide (DMSO), indicating that the Ce6 chromophore did not change upon conjugation. Investigation using fluorescence spectroscopy and confocal microscopy revealed a greater intracellular uptake of DC than of Ce6 alone. Moreover, DC exhibited significantly increased phototoxicity to human cervical cancer cells, mostly because of apoptotic cell death. These results imply that DC is a candidate for the clinical treatment of PDT.


A Bilayered Wood-Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate Hydrogel Interfacial Evaporator for Sustainable Solar-Driven Sewage Purification and Desalination.

  • Xinye Xu‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Solar-driven interfacial evaporation and purification is a promising solar energy conversion technology to produce clean water or solve water scarcity. Although wood-based photothermal materials have attracted particular interest in solar water purification and desalination due to their rapid water supply and great heat localization, challenges exist given their complicated processing methods and relatively poor stability. Herein, we propose a facile approach for fabricating a bilayered wood-poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (wood-PEDOT:PSS) hydrogel interfacial evaporator by direct drop-casting and dry-annealing. Benefiting from the unique combined merits of the wood-PEDOT:PSS hydrogel evaporator, i.e., excellent light absorption (~99.9%) and efficient photothermal conversion of nanofibrous PEDOT:PSS and the strong hydrophilicity and fast water transport from wood, the as-fabricated bilayered wood-PEDOT:PSS hydrogel evaporator demonstrates a remarkably high evaporation rate (~1.47 kg m-2 h-1) and high energy efficiency (~75.76%) at 1 kW m-2. We further demonstrate the practical applications of such an evaporator for sewage purification and desalination, showing outstanding performance stability and partial salt barrier capability against a continuous 10-day test in simulated seawater and an ultrahigh ion removal rate of 99.9% for metal ion-containing sewage. The design and fabrication of such novel, efficient wood-based interfacial evaporators pave the way for large-scale applications in solar water purification.


NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity.

  • Irina A Shurygina‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

Novel silver/poly-1-vinyl-1,2,4-triazole nanocomposite materials-possessing antimicrobial activity against Gram-positive and Gram-negative bacteria-have been synthesized and characterized in the solid state and aqueous solution by complex of modern physical-chemical and biologic methods. TEM-monitoring has revealed the main stages of microbial cell (E. coli) destruction by novel nanocomposite. The concept of direct polarized destruction of microbes by nanosilver proposed by the authors allows the relationship between physicochemical and antimicrobial properties of novel nanocomposites. At the same time, it was shown that the nanocomposite was nontoxic to the fibroblast cell culture. Thus, the synthesized nanocomposite combining antibacterial activity against Gram-positive and Gram-negative bacteria as well as the absence of toxic effects on mammalian cells is a promising material for the development of catheters, coatings for medical devices.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: