Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Effective Reconstruction of Functional Urethra Promoted With ICG-001 Delivery Using Core-Shell Collagen/Poly(Llactide-co-caprolactone) [P(LLA-CL)] Nanoyarn-Based Scaffold: A Study in Dog Model.

  • Kaile Zhang‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Hypospadias and urethral stricture are common urological diseases which seriously affect voiding function and life quality of the patients, yet current clinical treatments often result in unsatisfactory clinical outcome with frequent complications. In vitro experiments confirmed that ICG-001 (a well-established Wnt signaling inhibitor) could effectively suppress fibroblast proliferation and fibrotic protein expression. In this study, we applied a novel drug-delivering nanoyarn scaffold in urethroplasty in dog model, which continuously delivers ICG-001 during tissue reconstruction, and could effectively promote urethral recovery and resume fully functional urethra within 12 weeks. Such attempts are essential to the development of regenerative medicine for urological disorders and for broader clinical applications in human patients.


Poly-(ADP-ribose) polymerases inhibition by olaparib attenuates activities of the NLRP3 inflammasome and of NF-κB in THP-1 monocytes.

  • Khamis Mustafa‎ et al.
  • PloS one‎
  • 2024‎

Poly-(ADP-ribose) polymerases (PARPs) are a protein family that make ADP-ribose modifications on target genes and proteins. PARP family members contribute to the pathogenesis of chronic inflammatory diseases, including atherosclerosis, in which monocytes/macrophages play important roles. PARP inhibition is protective against atherosclerosis. However, the mechanisms by which PARP inhibition exerts this beneficial effect are not well understood. Here we show that in THP-1 monocytes, inhibition of PARP by olaparib attenuated oxidized low-density lipoprotein (oxLDL)-induced protein expressions of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing-3 (NLRP3) inflammasome components: NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1. Consistent with this effect, olaparib decreased oxLDL-enhanced interleukin (IL)-1β and IL-18 protein expression. Olaparib also decreased the oxLDL-mediated increase in mitochondrial reactive oxygen species. Similar to the effects of the NLRP3 inhibitor, MCC950, olaparib attenuated oxLDL-induced adhesion of monocytes to cultured human umbilical vein endothelial cells and reduced foam cell formation. Furthermore, olaparib attenuated the oxLDL-mediated activation of nuclear factor (NF)-κB through the oxLDL-mediated increase in IκBα phosphorylation and assembly of NF-κB subunits, demonstrated by co-immunoprecipitation of IκBα with RelA/p50 and RelB/p52 subunits. Moreover, PARP inhibition decreased oxLDL-mediated protein expression of a NF-κB target gene, VCAM1, encoding vascular cell adhesion molecule-1. This finding indicates an important role for NF-κB activity in PARP-mediated activation of the NLRP3 inflammasome. Thus, PARP inhibition by olaparib attenuates NF-κB and NLRP3 inflammasome activities, lessening monocyte cell adhesion and macrophage foam cell formation. These inhibitory effects of olaparib on NLRP3 activity potentially protect against atherosclerosis.


Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer.

  • Meng Wu‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

In the current study, we synthesized prostate cancer-targeting poly(lactide-co-glycolic acid) (PLGA) nanobubbles (NBs) modified using A10-3.2 aptamers targeted to prostate-specific membrane antigen (PSMA) and encapsulated paclitaxel (PTX). We also investigated their impact on ultrasound (US) imaging and therapy of prostate cancer. PTX-A10-3.2-PLGA NBs were developed using water-in-oil-in-water (water/oil/water) double emulsion and carbodiimide chemistry approaches. Fluorescence imaging together with flow cytometry verified that the PTX-A10-3.2-PLGA NBs were successfully fabricated and could specifically bond to PSMA-positive LNCaP cells. We speculated that, in vivo, the PTX-A10-3.2-PLGA NBs would travel for a long time, efficiently aim at prostate cancer cells, and sustainably release the loaded PTX due to the improved permeability together with the retention impact and US-triggered drug delivery. The results demonstrated that the combination of PTX-A10-3.2-PLGA NBs with low-frequency US achieved high drug release, a low 50% inhibition concentration, and significant cell apoptosis in vitro. For mouse prostate tumor xenografts, the use of PTX-A10-3.2-PLGA NBs along with low-frequency US achieved the highest tumor inhibition rate, prolonging the survival of tumor-bearing nude mice without obvious systemic toxicity. Moreover, LNCaP xenografts in mice were utilized to observe modifications in the parameters of PTX-A10-3.2-PLGA and PTX-PLGA NBs in the contrast mode and the allocation of fluorescence-labeled PTX-A10-3.2-PLGA and PTX-PLGA NBs in live small animals and laser confocal scanning microscopy fluorescence imaging. These results demonstrated that PTX-A10-3.2-PLGA NBs showed high gray-scale intensity and aggregation ability and showed a notable signal intensity in contrast mode as well as aggregation ability in fluorescence imaging. In conclusion, we successfully developed an A10-3.2 aptamer and loaded PTX-PLGA multifunctional theranostic agent for the purpose of obtaining US images of prostate cancer and providing low-frequency US-triggered therapy of prostate cancer that was likely to constitute a strategy for both prostate cancer imaging and chemotherapy.


Janus N,N-dimethylformamide as a solvent for a gradient porous wound dressing of poly(vinylidene fluoride) and as a reducer for in situ nano-silver production: anti-permeation, antibacterial and antifouling activities against multi-drug-resistant bacteria both in vitro and in vivo.

  • Menglong Liu‎ et al.
  • RSC advances‎
  • 2018‎

The requirements for anti-permeation, anti-infection and antifouling when treating a malicious wound bed raise new challenges for wound dressing. The present study used N,N-dimethylformamide to treat poly(vinylidene fluoride) (PVDF) in order to obtain a dressing impregnated with in situ generated nano-silver particles (NS) via an immersion phase inversion method. Scanning electron microscopy (SEM) images showed that the film was characterized by a two-layer asymmetric structure with different pore sizes (top layer: ∼0.4 μm; bottom layer: ∼1.8 μm). The moisture permeability test indicated that the film had an optimal water vapor transmission rate (WVTR: ∼2500 g m-2 per day). TEM images revealed the successful formation of spherical NS, and Fourier-transform infrared spectroscopy (FTIR) demonstrated the integration of PVDF and NS (i.e., PVDF/NS). Correspondingly, the water contact angle measurements confirmed increased membrane surface hydrophobicity after NS integration. The inductively coupled plasma (ICP) spectrometry showed that the PVDF/NS displayed a continuous and safe release of silver ions. Moreover, in vitro experiments indicated that PVDF/NS films possessed satisfactory anti-permeation, antibacterial and antifouling activities against A. baumannii and E. coli bacteria, while they exhibited no obvious cytotoxicity toward mammalian HaCaT cells. Finally, the in vivo results showed that the nanoporous top layer of film could serve as a physical barrier to prevent bacterial penetration, whereas the microporous bottom layer could efficiently prevent bacterial infection caused by biofouling, leading to fast re-epithelialization via the enhancement of keratinocyte proliferation. Collectively, the results show that the PVDF/NS25 film has a promising application in wound treatment, especially for wounds infected by multi-drug-resistant bacteria such as A. baumannii.


One-Step Method to Prepare PLLA Porous Microspheres in a High-Voltage Electrostatic Anti-Solvent Process.

  • Ying Wang‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2016‎

A one-step method using a high-voltage electrostatic anti-solvent process was employed to fabricate poly-l-lactide (PLLA) porous microspheres (PMs). To address the simplification and control of the preparation process, a 2⁴ full factorial experiment was performed to optimize the operating process and analyze the effect of the factors on the morphology and aerodynamic properties of the PLLA PMs, and various characterization tests were also performed. The resulting PLLA PMs exhibited an even and porous morphology with a density less than 0.4 g/cm³, a geometric mean diameter (Dg) of 10-30 μm, an aerodynamic diameter (Da) of 1-5 μm, a fine particle fraction (FPF) of 56.3%, and a porosity of 76.2%, meeting the requirements for pulmonary drug delivery. The physicochemical characterizations reveal that no significant chemical change occurred in the PLLA during the process. An investigation of its in vitro cytotoxicity and pulmonary toxicity shows no obvious toxic response, indicating good biosafety. This study indicates that the one-step method using a high-voltage electrostatic anti-solvent process has great potential in developing an inhalable drug carrier for pulmonary drug delivery.


Tri-Layer Core-Shell Fibers from Coaxial Electrospinning for a Modified Release of Metronidazole.

  • Ying Wang‎ et al.
  • Pharmaceutics‎
  • 2023‎

Polymers are the backbone of drug delivery. Electrospinning has greatly enriched the strategies that have been explored for developing novel drug delivery systems using polymers during the past two decades. In this study, four different kinds of polymers, i.e., the water-soluble polymer poly (vinyl alcohol) (PVA), the insoluble polymer poly(ε-caprolactone) (PCL), the insoluble polymer Eudragit RL100 (ERL100) and the pH-sensitive polymer Eudragit S100 (ES100) were successfully converted into types of tri-layer tri-polymer core-shell fibers through bi-fluid coaxial electrospinning. During the coaxial process, the model drug metronidazole (MTD) was loaded into the shell working fluid, which was an emulsion. The micro-formation mechanism of the tri-layer core-shell fibers from the coaxial emulsion electrospinning was proposed. Scanning electron microscope and transmission electron microscope evaluations verified the linear morphology of the resultant fibers and their obvious tri-layer multiple-chamber structures. X-ray diffraction and Fourier transform infrared spectroscopy measurements demonstrated that the drug MTD presented in the fibers in an amorphous state and was compatible with the three polymeric matrices. In vitro dissolution tests verified that the three kinds of polymer could act in a synergistic manner for a prolonged sustained-release profile of MTD in the gut. The drug controlled-release mechanisms were suggested in detail. The protocols reported here pioneer a new route for creating a tri-layer core-shell structure from both aqueous and organic solvents, and a new strategy for developing advanced drug delivery systems with sophisticated drug controlled-release profiles.


Homoharringtonine acts synergistically with SG235-TRAIL, a conditionally replicating adenovirus, in human leukemia cell lines.

  • Hai-tao Meng‎ et al.
  • Acta pharmacologica Sinica‎
  • 2009‎

To investigate the synergistic effects of SG235-TRAIL, a novel oncolytic adenovirus expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and homoharringtonine (HHT) in human leukemia cell lines.


Smart Soup, a traditional Chinese medicine formula, ameliorates amyloid pathology and related cognitive deficits.

  • Yujun Hou‎ et al.
  • PloS one‎
  • 2014‎

Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe disease-modifying treatment and symptomatic intervention alternatives against AD. Smart Soup (SS), a Chinese medicine formula composed of Rhizoma Acori Tatarinowii (AT), Poria cum Radix Pini (PRP) and Radix Polygalae (RP), is a typical prescription against memory deficits. Here, we assessed the efficacy of SS against AD. Oral administration of SS ameliorated the cognitive impairment of AD transgenic mice, with reduced Aβ levels, retarded Aβ amyloidosis and reduced Aβ-induced gliosis and neuronal loss in the brains of AD mice. Consistently, SS treatment reduced amyloid-related locomotor dysfunctions and premature death of AD transgenic Drosophila. Mechanistic studies showed that RP reduced Aβ generation, whereas AT and PRP exerted neuroprotective effects against Aβ. Taken together, our study indicates that SS could be effective against AD, providing a practical therapeutic strategy against the disease.


Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo.

  • Huanjie Yang‎ et al.
  • PloS one‎
  • 2012‎

The medicinal plant Withania somnifera has been used for over centuries in Indian Ayurvedic Medicine to treat a wide spectrum of disorders. Withaferin A (WA), a bioactive compound that is isolated from this plant, has anti-inflammatory, immuno-modulatory, anti-angiogenic, and anti-cancer properties. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of WA and the molecular mechanisms involved. WA inhibited growth of the murine as well as patient-derived MPM cells in part by decreasing the chymotryptic activity of the proteasome that resulted in increased levels of ubiquitinated proteins and pro-apoptotic proteasome target proteins (p21, Bax, IκBα). WA suppression of MPM growth also involved elevated apoptosis as evidenced by activation of pro-apoptotic p38 stress activated protein kinase (SAPK) and caspase-3, elevated levels of pro-apoptotic Bax protein and cleavage of poly-(ADP-ribose)-polymerase (PARP). Our studies including gene-array based analyses further revealed that WA suppressed a number of cell growth and metastasis-promoting genes including c-myc. WA treatments also stimulated expression of the cell cycle and apoptosis regulatory protein (CARP)-1/CCAR1, a novel transducer of cell growth signaling. Knock-down of CARP-1, on the other hand, interfered with MPM growth inhibitory effects of WA. Intra-peritoneal administration of 5 mg/kg WA daily inhibited growth of murine MPM cell-derived tumors in vivo in part by inhibiting proteasome activity and stimulating apoptosis. Together our in vitro and in vivo studies suggest that WA suppresses MPM growth by targeting multiple pathways that include blockage of proteasome activity and stimulation of apoptosis, and thus holds promise as an anti-MPM agent.


A novel structurally identified epitope delivered by macrophage membrane-coated PLGA nanoparticles elicits protection against Pseudomonas aeruginosa.

  • Chen Gao‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

The increasing prevalence of antibiotic resistance by Pseudomonas aeruginosa (PA) raises an urgent need for an effective vaccine. The outer membrane proteins of PA, especially those that are upregulated during infection, are ideal vaccine targets. However, the strong hydrophobicity of these proteins hinders their application for this purpose. In this study, we selected eight outer membrane proteins from PA with the most significantly upregulated expression. Their extracellular loops were analyzed and screened by using sera from patients who had recovered from PA infection. As a result, a novel immunogenic epitope (Ep167-193) from PilY1 (PA4554) was found. Moreover, we constructed a macrophage membrane-coated PLGA (poly lactic-co-glycolic acid) nanoparticle vaccine carrying PilY1 Ep167-193 (PNPs@M-Ep167-193) that elicits a Th2 immune response and confers adequate protection in mice. Our data furnished the promising vaccine candidate PNPs@M-Ep167-193 while providing additional evidence for structure-based epitope identification and vaccine design.


NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component.

  • Hexin Shi‎ et al.
  • Nature immunology‎
  • 2016‎

The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines, including interleukin 1β (IL-1β) and IL-18. We found here that activation of the NLRP3 inflammasome was restricted to interphase of the cell cycle by NEK7, a serine-threonine kinase previously linked to mitosis. Activation of the NLRP3 inflammasome required NEK7, which bound to the leucine-rich repeat domain of NLRP3 in a kinase-independent manner downstream of the induction of mitochondrial reactive oxygen species (ROS). This interaction was necessary for the formation of a complex containing NLRP3 and the adaptor ASC, oligomerization of ASC and activation of caspase-1. NEK7 promoted the NLRP3-dependent cellular inflammatory response to intraperitoneal challenge with monosodium urate and the development of experimental autoimmune encephalitis in mice. Our findings suggest that NEK7 serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division.


PEGylated gold nanorods with a broad absorption band in the first near-infrared window for in vivo multifunctional photoacoustic imaging.

  • Yiping Wang‎ et al.
  • RSC advances‎
  • 2020‎

Nanoparticles with absorbances in the near-infrared window (NIR, 700-1300 nm) are ideal contrast agents for in vivo imaging of deep tissue with high signal-to-noise ratios. By using CTAB and l(+)-ascorbic acid (AA) as ligands to effectively balance particle nucleation and growth, PEGylated Au nanorods (NRs) with broad absorption bands (from 650 to 1100 nm) in the first NIR window could be successfully realized. The morphologies, crystal structures, absorption and biotoxicities of the samples were determined by TEM, TGA, UV-vis and MTT assay. The results indicated that the presence of a thin poly(ethylene glycol) (PEG) shell could greatly improve the biocompatibility of the Au NRs (1.7 times that of non-PEGylated Au NRs), making them harmless to living cells. Moreover, the prepared PEGylated Au NRs displayed the highest image contrast and SNR values (1.1-1.5 times that of commercial Au nanospheres and NRs), with excitation lasers of 532, 680 and 828 nm, showing their great potential for use in multicolor photoacoustic imaging in vivo. With the prepared PEGylated Au NRs, a functional image of oxygen saturation was constructed in a single step without changing the contrast agent.


Schizandrin A can inhibit non‑small cell lung cancer cell proliferation by inducing cell cycle arrest, apoptosis and autophagy.

  • Linhai Zhu‎ et al.
  • International journal of molecular medicine‎
  • 2021‎

Schizandrin A (SchA) can be extracted from the vine plant Schisandra chinensis and has been reported to confer various biologically active properties. However, its potential biological effects on non‑small cell lung cancer (NSCLC) remain unknown. Therefore, the present study aims to address this issue. NSCLC and normal lung epithelial cell lines were first treated with SchA. Cell viability and proliferation were measured using CellTiter‑Glo Assay and colony formation assays, respectively. PI staining was used to measure cell cycle distribution. Cell cycle‑related proteins p53, p21, cyclin D1, CDK4, CDK6, cyclin E1, cyclin E2, CDK2 and DNA damage‑related protein SOX4 were detected by western blot analysis. Annexin V‑FITC/PI staining, DNA electrophoresis and Hoechst 33342/PI dual staining were used to detect apoptosis. JC‑1 and DCFH‑DA fluorescent dyes were used to measure the mitochondrial membrane potential and reactive oxygen species concentrations, respectively. Apoptosis‑related proteins caspase‑3, cleaved caspase‑3, poly(ADP‑ribose) polymerase (PARP), cleaved PARP, BimEL, BimL, BimS, Bcl2, Bax, caspase‑9 and cleaved caspas‑9 were measured by western blot analysis. Dansylcadaverine was used to detect the presence of the acidic lysosomal vesicles. The expression levels of the autophagy‑related proteins LC3‑I/II, p62/SQSTM and AMPKα activation were measured using western blot analysis. In addition, the autophagy inhibitor 3‑methyladenine was used to inhibit autophagy. SchA treatment was found to reduce NSCLC cell viability whilst inhibiting cell proliferation. Low concentrations of SchA (10‑20 µM) mainly induced G1/S‑phase cell cycle arrest. By contrast, as the concentration of SchA used increases (20‑50 µM), cells underwent apoptosis and G2/M‑phase cell cycle a13rrest. As the treatment concentration of SchA increased from 0 to 50 µM, the expression of p53 and SOX4 protein also concomitantly increased, but the expression of p21 protein was increased by 10 µM SchA and decreased by higher concentrations (20‑50 µM). In addition, the mRNA and protein expression levels of Bcl‑like 11 (Bim)EL, BimL and BimS increased following SchA application. SchA induced the accumulation of acidic vesicles and induced a marked increase in the expression of LC3‑II protein, suggsting that SchA activated the autophagy pathway. However, the expression of the p62 protein was found to be increased by SchA, suggesting that p62 was not degraded during the autophagic flux. The 3‑methyladenine exerted no notable effects on SchA‑induced apoptosis. Taken together, results from the present study suggest that SchA exerted inhibitory effects on NSCLC physiology by inducing cell cycle arrest and apoptosis. In addition, SchA partially induced autophagy, which did not result in any cytoprotective effects.


Addition of a carboxy-terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice.

  • Chirine Toufaily‎ et al.
  • eLife‎
  • 2021‎

Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G-protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.


Noncanonical mono(ADP-ribosyl)ation of zinc finger SZF proteins counteracts ubiquitination for protein homeostasis in plant immunity.

  • Liang Kong‎ et al.
  • Molecular cell‎
  • 2021‎

Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.


Extensive Involvement of Alternative Polyadenylation in Single-Nucleus Neurons.

  • Ying Wang‎ et al.
  • Genes‎
  • 2020‎

Cleavage and polyadenylation are essential processes that can impact many aspects of mRNA fate. Most eukaryotic genes have alternative polyadenylation (APA) events. While the heterogeneity of mRNA polyadenylation isoform choice has been studied in specific tissues, less attention has been paid to the neuronal heterogeneity of APA selection at single-nucleus resolution. APA is highly controlled during development and neuronal activation, however, to what extent APA events vary in a specific neuronal cell population and the regulatory mechanisms are still unclear. In this paper, we investigated dynamic APA usage in different cell types using snRNA-seq data of 1424 human brain cells generated by single-cell 3' RNA sequencing. We found that distal APA sites are not only favored by global neuronal cells, but that their usage also varies between the principal types of neuronal cell populations (excitatory neurons and inhibitory neurons). A motif analysis and a gene functional analysis indicated the enrichment of RNA-binding protein (RBP) binding sites and neuronal functions for the set of genes with neuron-enhanced distal PAS usage. Our results revealed the extensive involvement of APA regulation in neuronal populations at the single-nucleus level, providing new insights into roles for APA in specific neuronal cell populations, as well as utility in future functional studies.


Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine.

  • Ying Wang‎ et al.
  • Bioactive materials‎
  • 2021‎

Combining chemo-therapeutics with immune checkpoint inhibitors facilitates killing cancer cells and activating the immune system through inhibiting immune escape. However, their treatment effects remain limited due to the compromised accumulation of both drugs and inhibitors in certain tumor tissues. Herein, a new poly (acrylamide-co-acrylonitrile-co-vinylimidazole-co-bis(2-methacryloyl) oxyethyl disulfide) (PAAVB) polymer-based intelligent platform with controllable upper critical solution temperature (UCST) was used for the simultaneous delivery of paclitaxel (PTX) and curcumin (CUR). Additionally, a hyaluronic acid (HA) layer was coated on the surface of PAAVB NPs to target the CD44-overexpressed tumor cells. The proposed nanomedicine demonstrated a gratifying accumulation in tumor tissue and uptake by cancer cells. Then, the acidic microenvironment and high level of glutathione (GSH) in cancer cells could spontaneously decrease the UCST of polymer, leading to the disassembly of the NPs and rapid drug release at body temperature without extra-stimuli. Significantly, the released PTX and CUR could induce the immunogenic cell death (ICD) to promote adaptive anti-tumor immunogenicity and inhibit immunosuppression through suppressing the activity of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme respectively. Therefore, the synergism of this intelligent nanomedicine can suppress primary breast tumor growth and inhibit their lung metastasis.


Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction.

  • Pinghui Zhou‎ et al.
  • Regenerative biomaterials‎
  • 2023‎

Bone defects are a persistent challenge in clinical practice. Although repair therapies based on tissue-engineered materials, which are known to have a crucial role in defective bone regeneration, have gathered increased attention, the current treatments for massive bone defects have several limitations. In the present study, based on the immunomodulatory inflammatory microenvironment properties of quercetin, we encapsulated quercetin-solid lipid nanoparticles (SLNs) in a hydrogel. Temperature-responsive poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) modifications were coupled to the main chain of hyaluronic acid hydrogel, constructing a novel, injectable bone immunomodulatory hydrogel scaffold. Extensive in vitro and in vivo data showed that this bone immunomodulatory scaffold forms an anti-inflammatory microenvironment by decreasing M1 polarization, while elevating the M2 polarization. Synergistic effects on angiogenesis and anti-osteoclastic differentiation were observed. These findings further proved that administering quercetin SLNs encapsulated in a hydrogel can aid bone defect reconstruction in rats, providing new insights for large-scale bone defect repair.


Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies.

  • Ying Wang‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Stoneflies comprise an ancient group of insects, but the phylogenetic position of Plecoptera and phylogenetic relations within Plecoptera have long been controversial, and more molecular data is required to reconstruct precise phylogeny. Herein, we present the complete mitogenome of a stonefly, Suwallia teleckojensis, which is 16146 bp in length and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a control region (CR). Most PCGs initiate with the standard start codon ATN. However, ND5 and ND1 started with GTG and TTG. Typical termination codons TAA and TAG were found in eleven PCGs, and the remaining two PCGs (COII and ND5) have incomplete termination codons. All transfer RNA genes (tRNAs) have the classic cloverleaf secondary structures, with the exception of tRNASer(AGN), which lacks the dihydrouridine (DHU) arm. Secondary structures of the two ribosomal RNAs were shown referring to previous models. A large tandem repeat region, two potential stem-loop (SL) structures, Poly N structure (2 poly-A, 1 poly-T and 1 poly-C), and four conserved sequence blocks (CSBs) were detected in the control region. Finally, both maximum likelihood (ML) and Bayesian inference (BI) analyses suggested that the Capniidae was monophyletic, and the other five stonefly families form a monophyletic group. In this study, S. teleckojensis was closely related to Sweltsa longistyla, and Chloroperlidae and Perlidae were herein supported to be a sister group.


Mitochondrial Fission Promotes the Continued Clearance of Apoptotic Cells by Macrophages.

  • Ying Wang‎ et al.
  • Cell‎
  • 2017‎

Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs. We show here that uptake of multiple ACs by macrophages requires dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, which is triggered by AC uptake. When mitochondrial fission is disabled, AC-induced increase in cytosolic calcium is blunted owing to mitochondrial calcium sequestration, and calcium-dependent phagosome formation around secondarily encountered ACs is impaired. These defects can be corrected by silencing the mitochondrial calcium uniporter (MCU). Mice lacking myeloid Drp1 showed defective efferocytosis and its pathologic consequences in the thymus after dexamethasone treatment and in advanced atherosclerotic lesions in fat-fed Ldlr-/- mice. Thus, mitochondrial fission in response to AC uptake is a critical process that enables macrophages to clear multiple ACs and to avoid the pathologic consequences of defective efferocytosis in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: