Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Multiple poliovirus-induced organelles suggested by comparison of spatiotemporal dynamics of membranous structures and phosphoinositides.

  • Hyung S Oh‎ et al.
  • PLoS pathogens‎
  • 2018‎

At the culmination of poliovirus (PV) multiplication, membranes are observed that contain phosphatidylinositol-4-phosphate (PI4P) and appear as vesicular clusters in cross section. Induction and remodeling of PI4P and membranes prior to or concurrent with genome replication has not been well studied. Here, we exploit two PV mutants, termed EG and GG, which exhibit aberrant proteolytic processing of the P3 precursor that substantially delays the onset of genome replication and/or impairs virus assembly, to illuminate the pathway of formation of PV-induced membranous structures. For WT PV, changes to the PI4P pool were observed as early as 30 min post-infection. PI4P remodeling occurred even in the presence of guanidine hydrochloride, a replication inhibitor, and was accompanied by formation of membrane tubules throughout the cytoplasm. Vesicular clusters appeared in the perinuclear region of the cell at 3 h post-infection, a time too slow for these structures to be responsible for genome replication. Delays in the onset of genome replication observed for EG and GG PVs were similar to the delays in virus-induced remodeling of PI4P pools, consistent with PI4P serving as a marker of the genome-replication organelle. GG PV was unable to convert virus-induced tubules into vesicular clusters, perhaps explaining the nearly 5-log reduction in infectious virus produced by this mutant. Our results are consistent with PV inducing temporally distinct membranous structures (organelles) for genome replication (tubules) and virus assembly (vesicular clusters). We suggest that the pace of formation, spatiotemporal dynamics, and the efficiency of the replication-to-assembly-organelle conversion may be set by both the rate of P3 polyprotein processing and the capacity for P3 processing to yield 3AB and/or 3CD proteins.


The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

  • Djoshkun Shengjuler‎ et al.
  • Structure (London, England : 1993)‎
  • 2017‎

Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses.


Conformational Ensemble of the Poliovirus 3CD Precursor Observed by MD Simulations and Confirmed by SAXS: A Strategy to Expand the Viral Proteome?

  • Ibrahim M Moustafa‎ et al.
  • Viruses‎
  • 2015‎

The genomes of RNA viruses are relatively small. To overcome the small-size limitation, RNA viruses assign distinct functions to the processed viral proteins and their precursors. This is exemplified by poliovirus 3CD protein. 3C protein is a protease and RNA-binding protein. 3D protein is an RNA-dependent RNA polymerase (RdRp). 3CD exhibits unique protease and RNA-binding activities relative to 3C and is devoid of RdRp activity. The origin of these differences is unclear, since crystal structure of 3CD revealed "beads-on-a-string" structure with no significant structural differences compared to the fully processed proteins. We performed molecular dynamics (MD) simulations on 3CD to investigate its conformational dynamics. A compact conformation of 3CD was observed that was substantially different from that shown crystallographically. This new conformation explained the unique properties of 3CD relative to the individual proteins. Interestingly, simulations of mutant 3CD showed altered interface. Additionally, accelerated MD simulations uncovered a conformational ensemble of 3CD. When we elucidated the 3CD conformations in solution using small-angle X-ray scattering (SAXS) experiments a range of conformations from extended to compact was revealed, validating the MD simulations. The existence of conformational ensemble of 3CD could be viewed as a way to expand the poliovirus proteome, an observation that may extend to other viruses.


Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro.

  • David Franco‎ et al.
  • Virology journal‎
  • 2005‎

Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol) domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.


Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

  • Andrew Woodman‎ et al.
  • Nucleic acids research‎
  • 2016‎

Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process.


Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase.

  • Xinran Liu‎ et al.
  • Viruses‎
  • 2015‎

The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation.


The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family.

  • Lonneke van der Linden‎ et al.
  • PLoS pathogens‎
  • 2015‎

The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.


Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses.

  • Richard Janissen‎ et al.
  • Molecular cell‎
  • 2021‎

Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.


Enteroviral 2C protein is an RNA-stimulated ATPase and uses a two-step mechanism for binding to RNA and ATP.

  • Calvin Yeager‎ et al.
  • Nucleic acids research‎
  • 2022‎

The enteroviral 2C protein is a therapeutic target, but the absence of a mechanistic framework for this enzyme limits our understanding of inhibitor mechanisms. Here, we use poliovirus 2C and a derivative thereof to elucidate the first biochemical mechanism for this enzyme and confirm the applicability of this mechanism to other members of the enterovirus genus. Our biochemical data are consistent with a dimer forming in solution, binding to RNA, which stimulates ATPase activity by increasing the rate of hydrolysis without impacting affinity for ATP substantially. Both RNA and DNA bind to the same or overlapping site on 2C, driven by the phosphodiester backbone, but only RNA stimulates ATP hydrolysis. We propose that RNA binds to 2C driven by the backbone, with reorientation of the ribose hydroxyls occurring in a second step to form the catalytically competent state. 2C also uses a two-step mechanism for binding to ATP. Initial binding is driven by the α and β phosphates of ATP. In the second step, the adenine base and other substituents of ATP are used to organize the active site for catalysis. These studies provide the first biochemical description of determinants driving specificity and catalytic efficiency of a picornaviral 2C ATPase.


Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases.

  • Mona Seifert‎ et al.
  • Nucleic acids research‎
  • 2020‎

RNA virus survival depends on efficient viral genome replication, which is performed by the viral RNA dependent RNA polymerase (RdRp). The recent development of high throughput magnetic tweezers has enabled the simultaneous observation of dozens of viral RdRp elongation traces on kilobases long templates, and this has shown that RdRp nucleotide addition kinetics is stochastically interrupted by rare pauses of 1-1000 s duration, of which the short-lived ones (1-10 s) are the temporal signature of a low fidelity catalytic pathway. We present a simple and precise temperature controlled system for magnetic tweezers to characterize the replication kinetics temperature dependence between 25°C and 45°C of RdRps from three RNA viruses, i.e. the double-stranded RNA bacteriophage Φ6, and the positive-sense single-stranded RNA poliovirus (PV) and human rhinovirus C (HRV-C). We found that Φ6 RdRp is largely temperature insensitive, while PV and HRV-C RdRps replication kinetics are activated by temperature. Furthermore, the activation energies we measured for PV RdRp catalytic state corroborate previous estimations from ensemble pre-steady state kinetic studies, further confirming the catalytic origin of the short pauses and their link to temperature independent RdRp fidelity. This work will enable future temperature controlled study of biomolecular complex at the single molecule level.


RNA-Dependent RNA Polymerase Speed and Fidelity are not the Only Determinants of the Mechanism or Efficiency of Recombination.

  • Hyejeong Kim‎ et al.
  • Genes‎
  • 2019‎

Using the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV) as our model system, we have shown that Lys-359 in motif-D functions as a general acid in the mechanism of nucleotidyl transfer. A K359H (KH) RdRp derivative is slow and faithful relative to wild-type enzyme. In the context of the KH virus, RdRp-coding sequence evolves, selecting for the following substitutions: I331F (IF, motif-C) and P356S (PS, motif-D). We have evaluated IF-KH, PS-KH, and IF-PS-KH viruses and enzymes. The speed and fidelity of each double mutant are equivalent. Each exhibits a unique recombination phenotype, with IF-KH being competent for copy-choice recombination and PS-KH being competent for forced-copy-choice recombination. Although the IF-PS-KH RdRp exhibits biochemical properties within twofold of wild type, the virus is impaired substantially for recombination in cells. We conclude that there are biochemical properties of the RdRp in addition to speed and fidelity that determine the mechanism and efficiency of recombination. The interwoven nature of speed, fidelity, the undefined property suggested here, and recombination makes it impossible to attribute a single property of the RdRp to fitness. However, the derivatives described here may permit elucidation of the importance of recombination on the fitness of the viral population in a background of constant polymerase speed and fidelity.


A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus.

  • William J Fitzsimmons‎ et al.
  • PLoS biology‎
  • 2018‎

Mutation rates can evolve through genetic drift, indirect selection due to genetic hitchhiking, or direct selection on the physicochemical cost of high fidelity. However, for many systems, it has been difficult to disentangle the relative impact of these forces empirically. In RNA viruses, an observed correlation between mutation rate and virulence has led many to argue that their extremely high mutation rates are advantageous because they may allow for increased adaptability. This argument has profound implications because it suggests that pathogenesis in many viral infections depends on rare or de novo mutations. Here, we present data for an alternative model whereby RNA viruses evolve high mutation rates as a byproduct of selection for increased replicative speed. We find that a poliovirus antimutator, 3DG64S, has a significant replication defect and that wild-type (WT) and 3DG64S populations have similar adaptability in 2 distinct cellular environments. Experimental evolution of 3DG64S under selection for replicative speed led to reversion and compensation of the fidelity phenotype. Mice infected with 3DG64S exhibited delayed morbidity at doses well above the lethal level, consistent with attenuation by slower growth as opposed to reduced mutational supply. Furthermore, compensation of the 3DG64S growth defect restored virulence, while compensation of the fidelity phenotype did not. Our data are consistent with the kinetic proofreading model for biosynthetic reactions and suggest that speed is more important than accuracy. In contrast with what has been suggested for many RNA viruses, we find that within-host spread is associated with viral replicative speed and not standing genetic diversity.


The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage.

  • Alexander E Gorbalenya‎ et al.
  • Journal of molecular biology‎
  • 2002‎

Template-dependent polynucleotide synthesis is catalyzed by enzymes whose core component includes a ubiquitous alphabeta palm subdomain comprising A, B and C sequence motifs crucial for catalysis. Due to its unique, universal conservation in all RNA viruses, the palm subdomain of RNA-dependent RNA polymerases (RdRps) is widely used for evolutionary and taxonomic inferences. We report here the results of elaborated computer-assisted analysis of newly sequenced replicases from Thosea asigna virus (TaV) and the closely related Euprosterna elaeasa virus (EeV), insect-specific ssRNA+ viruses, which revise a capsid-based classification of these viruses with tetraviruses, an Alphavirus-like family. The replicases of TaV and EeV do not have characteristic methyltransferase and helicase domains, and include a putative RdRp with a unique C-A-B motif arrangement in the palm subdomain that is also found in two dsRNA birnaviruses. This circular motif rearrangement is a result of migration of approximately 22 amino acid (aa) residues encompassing motif C between two internal positions, separated by approximately 110 aa, in a conserved region of approximately 550 aa. Protein modeling shows that the canonical palm subdomain architecture of poliovirus (ssRNA+) RdRp could accommodate the identified sequence permutation through changes in backbone connectivity of the major structural elements in three loop regions underlying the active site. This permutation transforms the ferredoxin-like beta1alphaAbeta2beta3alphaBbeta4 fold of the palm subdomain into the beta2beta3beta1alphaAalphaBbeta4 structure and brings beta-strands carrying two principal catalytic Asp residues into sequential proximity such that unique structural properties and, ultimately, unique functionality of the permuted RdRps may result. The permuted enzymes show unprecedented interclass sequence conservation between RdRps of true ssRNA+ and dsRNA viruses and form a minor, deeply separated cluster in the RdRp tree, implying that other, as yet unidentified, viruses may employ this type of RdRp. The structural diversification of the palm subdomain might be a major event in the evolution of template-dependent polynucleotide polymerases in the RNA-protein world.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: